refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 305 results
Sort by

Filters

Technology

Platform

accession-icon SRP184537
TFEB-driven lysosomal biogenesis is pivotal for PGC1a-dependent renal stress resistance
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is somewhat paradoxical that proliferator gamma coactivator 1-alpha (PGC1a), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1a's induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1a knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1a not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1a did not consistent affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1a in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1a's exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance. Overall design: 12 samples in total = 3 replicates each from 4 groups

Publication Title

TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE8512
Expression data from mouse bone marrow macrophages from a strain intercross
  • organism-icon Mus musculus
  • sample-icon 207 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bone marrow macrophages were cultured from 16 week old apoE-deficient F2 mice from an AKRxDBA/2 intercross

Publication Title

Sex specific gene regulation and expression QTLs in mouse macrophages from a strain intercross.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54709
Expression data from 786-O renal cell cancer cells treated with pentamidine
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

While early stages of clear cell renal cell carcinoma (ccRCC) are curable, survival outcome for metastatic ccRCC remains poor. The purpose of the current study was to apply a new individualized bioinformatics analysis (IBA) strategy to these transcriptome data in conjunction with Gene Set Enrichment Analysis of the Connectivity Map (C-MAP) database to identify and reposition FDA-approved drugs for anti-cancer therapy. We demonstrated that one of the drugs predicted to revert the RCC gene signature towards normal kidney, pentamidine, is effective against RCC cells in culture and in a RCC xenograft model. Most importantly, pentamidine slows tumor growth in the 786-O human ccRCC xenograft mouse model. To determine which genes are regulated by pentamidine in a human RCC cell line, 786-O, we treated these cells with pentamidine and performed transcriptional profiling analysis.

Publication Title

Computational repositioning and preclinical validation of pentamidine for renal cell cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE10041
Genomic Counter-Stress Changes Induced by Mind-Body Practice
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mind-body practices that elicit the relaxation response (RR) have been used worldwide for millennia to prevent and treat disease. The RR is believed to be the counterpart to stress response and is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. Individuals experiencing chronic psychological stress have the opposite pattern of physiology and a characteristic transcriptional profile. We hypothesized that consistent, long-term practice of RR techniques results in characteristic changes in gene expression. We tested this hypothesis by assessing the transcriptional profile of whole blood in healthy, long-term practitioners of daily RR practice (group M) in comparison to healthy controls (group N1). The signature obtained has been validated on new subject data.

Publication Title

Genomic counter-stress changes induced by the relaxation response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55945
Gene Expression Profiling of Prostate Benign and Malignant Tissue
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We profiled genome-wide gene expression of human prostate benign and malignant tissue to identify potential biomarkers and immunotherapy targets.

Publication Title

Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64052
Gene expression changes during resistance toward vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) therapy in renal cell carcinoma (RCC)
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was performed to understand the gene expression changes that accompany treatment of renal cell carcinoma (RCC) with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) therapy. Human RCC cell lines were implanted into the flanks of nude beige mice, allowed to reach 12mm in long axis, and then treated with TKIs (sunitinib or sorafenib). Tumors were excised at 2 timepoints (prior to any therapy and at the 20mm endpoint of the study) and gene expression analysis was performed.

Publication Title

Anti-S1P Antibody as a Novel Therapeutic Strategy for VEGFR TKI-Resistant Renal Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE20299
Expression profiling of Stomach and Colon of Spdef Knockout mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Gene expression profiling on stomach and colon tissue from Spdef knockout, heterozygous and wild type mice.

Publication Title

Requirement of the epithelium-specific Ets transcription factor Spdef for mucous gland cell function in the gastric antrum.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP083760
Genetic vs Dietary Models of Iron Overload in the Mouse Liver
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Iron overload causes the generation of reactive oxygen species, which can lead to lasting damage to the liver and other organs. We studied the effects of iron deficiency and iron overload on the hepatic transcriptional and metabolomic profile in mouse models. Overall design: We studied effect of different iron overloads (High, medium and Low) on liver transcriptome using whole genome transcriptome profiling.

Publication Title

Nicotinamide N-methyltransferase expression decreases in iron overload, exacerbating toxicity in mouse hepatocytes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE14801
Expression data from ERG Si treated and Control HUVEC cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ERG (Ets Related Gene) is an ETS transcription factor that was originally described for its role in a number of human cancers. Our preliminary data demonstrate that ERG exhibits a highly EC restricted pattern of expression in cultured primary cells and several adult tissues including the heart, lung, and brain. In response to inflammatory stimuli, such as TNF-alpha, we observed a marked reduction of ERG expression in EC.

Publication Title

Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated through transcriptional repression of the interleukin-8 gene.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP083889
Genetic Model of iron deficiency in the Mouse Liver
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Iron overload causes the generation of reactive oxygen species, which can lead to lasting damage to the liver and other organs. We studied the effects of iron deficiency and iron overload on the hepatic transcriptional and metabolomic profile in mouse models. Overall design: We studied effect of different iron deficiency by HJV gene knockout mice on liver transcriptome using whole genome transcriptome profiling.

Publication Title

Nicotinamide N-methyltransferase expression decreases in iron overload, exacerbating toxicity in mouse hepatocytes.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact