refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE22035
Gene expression data in estrogen receptor alpha positive breast tumors with and without PIK3CA mutations.
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PI3K/AKT pathway plays one of pivotal roles in breast cancer development and maintenance. PIK3CA, coding PIK3 catalytic subunit, is the oncogene which shows the high frequency of gain-of-function mutations leading to the PI3K/AKT pathway activation in breast cancer. In particular in the ER-positive breast tumors PIK3CA mutations have been observed in 30% to 40%. However, genes expressed in connection to the pathway activation in breast tumorigenesis remain largely unknown.

Publication Title

Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE35511
Gene-expression profiling of ZNF217-overexpressing MDA-MB-231 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To obtain an overview of the cellular functions regulated by ZNF217 signaling in breast-cancer cell lines, we performed global gene-expression profiling on MDA-MB-231-pcDNA6 and MDA-MB-231-ZNF217 cells

Publication Title

ZNF217 is a marker of poor prognosis in breast cancer that drives epithelial-mesenchymal transition and invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11078
A six-gene signature predicting breast cancer lung metastasis
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The lungs are a frequent target of metastatic breast cancer cells, but the underlying molecular mechanisms are unclear. All existing data were obtained either using statistical association between gene expression measurements found in primary tumors and clinical outcome, or using experimentally derived signatures from mouse tumor models. Here, we describe a distinct approach that consists to utilize tissue surgically resected from lung metastatic lesions and compare their gene expression profiles with those from non-pulmonary sites, all coming from breast cancer patients.

Publication Title

A six-gene signature predicting breast cancer lung metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55561
Gene expression profiles of PDX models with acquired resistance to endocrine treatments
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Acquired resistance to endocrine therapy occurs with high frequency in patients with luminal breast cancer (LBC). We report here the establishment of four patient-derived xenograft models of LBC with acquired resistance in vivo to tamoxifen and estrogen deprivation.

Publication Title

Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE114269
Medullary breast carcinoma, a triple-negative breast cancer subtype associated with BCLG overexpression and BRCAness
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Medullary Breast Carcinoma, a Triple-Negative Breast Cancer Associated with BCLG Overexpression.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE114168
Medullary breast carcinoma, a triple-negative breast cancer subtype associated with BCLG overexpression.
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression was compared between medullary breast carcinoma (MBC) and non medullary basal-like breast carcinoma (non-MBC BLC).

Publication Title

Medullary Breast Carcinoma, a Triple-Negative Breast Cancer Associated with BCLG Overexpression.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE146661
Expression data from Patient-derived tumor models (PDX) establish from bone metastases and match human breast primary tumor.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Bone is the most common metastatic site in ER+ patients, however bone metastases are technically challenging to biopsy and analyse. Difficulties concern both tumour tissue acquisition and techniques for analysis and RNA extractions. Patient-derived xenografts (PDX) of BC bone metastases have not been reported yet. For the first time we established PDX models from bone metastatic biopsies of patients progressing on ET and treated by vertebroplasty. PDX models were analysed at transcriptomic level and compared to patient’s early primary tumours to identify new therapeutic targets associated with endocrine resistance in the metastatic setting.

Publication Title

PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance.

Sample Metadata Fields

Disease, Disease stage, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact