Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View SamplesTo investigate the role of TAZ downstream of APC and beta-catenin in mammary epithelial cells cells, we compared the expression profiles of MCF10-T1k (MII) cells transfected with siControl, siAPC, siAPC+siTAZ, sibeta-catenin, or sibeta-catenin+siTAZ.
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View SamplesTo investigate the role of TAZ downstream of the abberrant Wnt signaling in CRC cells, we compared the expression profiles of parental SW480 cells (empty vector) transfected with siControl, siTAZ, sibeta-catenin or reconstituted with wild type APC and transfected with siControl
Role of TAZ as mediator of Wnt signaling.
Cell line, Treatment
View SamplesIn this study we isolated and cultured neural progenitor cells (NPCs) from human fetal brain collected during the gliogenic phase (second trimester) of aborted fetuses, we differentiated NPCs into astrocyte using different protocols (FBS or CNTF/BMP4) and utilized RNA sequencing to analyze transcriptomic changes underlying the differentiation process Overall design: Neural progenitor cells (NPCs) isolated from 4 different donors (91, 103, 110 and 114 days embryos) were differentiated for 1 week using 2.5% FBS, while 3 NPCs lines (two from 103 and one from 110 days embryo) were differentiated for 1 week in the presence of CNTF/BMP4. RNA was extracted from NPCs before and after differentiation and submitted for sequencing on the Illumina HiSeq 2000 platform
A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.
No sample metadata fields
View SamplesTo investigate the time-dependent and coordinated sequence of inflammation-related events, and the dynamic features of macrophage polarisation/activation, we build and validated an in vitro model based on primary human monocytes
Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth.
Specimen part, Cell line
View SamplesThe goal of this study was to identify YAP/TAZ direct transcriptional targets and transcriptional partners, through ChIP-sequencing and gene expression profiling.
Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth.
Specimen part, Cell line
View SamplesKaryotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). 40-50% of patients displayed hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To characterize hyperdiploid (H) and nonhyperdiploid (NH) MM molecularly, we analyzed the gene expression profiles of 66 primary tumors, and used FISH to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the29% up-regulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. We showed that H-MM could be further divided into two distinct molecular and transcriptional entities, characterized by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion, respectively. Our data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management.
Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma.
Sex
View Samples