This SuperSeries is composed of the SubSeries listed below.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesReversible MHC class I deficiency on tumour cells is commonly caused by coordinated silencing of antigen-presenting machinery genes and restorable by IFN. Here we describe association of DNA demethylation of selected antigen-presenting machinery gene regulatory regions located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN treatment with MHC class I upregulation on tumour cells. Our novel findings demonstrate that IFN acts as an epigenetic modifier upregulating the expression of antigen-presenting machinery genes through DNA demethylation. Our data also cast more light on the role of DNA methylation in tumour cell escape from specific immunity.
Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex, Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex
View Samples