The oviducts contain high grade serous cancer precursors, which are -H2AXp and p53 mutation positive. Secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer. We evaluated PAX2 expression in proliferating oviductal cells, normal mucosa, SCOUTs, Walthard cell nests, STINs and HGSCs. Non-ciliated cells in normal mucosa were PAX2 positive but became PAX2 negative in multilayered epithelium. PAX2 negative SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a tubal phenotype and were ALDH1 negative. Type II displayed a columnar to pseudostratified phenotype, with an EZH2,ALDH1, -catenin, Stathmin, LEF1, RCN1 and RUNX2 expression signature . This study, for the first time, links PAX2 negative with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2) calcium binding (RCN1) and oncogenesis (Stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target of early prevention.
The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium.
Sex, Specimen part, Disease
View SamplesNuclear receptors (NRs) are ligand-activated transcription factors regulating a large variety of processes involved in reproduction, development, and metabolism. NRs are ideal drug targets. Immortalized cell lines recapitulate NR biology very poorly and primary cultures are laborious and require a constant need for donor material. There is a clear need for development of novel preclinical model systems that better resemble human physiology since technical uncertainty early in drug development is the cause of many preclinical drugs not reaching the clinic. Here, we studied whether organoids, mini-organs derived from the respective tissues stem cells, can serve as a novel (preclinical) model system to study NR biology and targeteability. We characterized mRNA expression profiles of the NR superfamily in mouse liver, ileum, and colon organoids. NR mRNA expression patterns were similar to the respective tissues, indicating their suitability for NR research. Metabolic NRs Fxr, Lxr, Lxr, Ppar, and Ppar were responsive to ligands in an NR-dependent fashion, as demonstrated by regulation of expression and binding to endogenous target genes. Transcriptome analyses of wildtype colonic organoids stimulated with Rosiglitazone showed that lipid metabolism was the highest significant changed function, greatly mimicking the known function of PPARs and Rosiglitazone in vivo. In conclusion, our results demonstrate that organoids constitutes a versatile and promising in vitro system to study NR biology and targeteability.
Characterization of stem cell-derived liver and intestinal organoids as a model system to study nuclear receptor biology.
Treatment
View SamplesThe pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury or sham surgery (n=12). One week after RLN injury, larynges were harvested following euthanasia. mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles, and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries.
Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.
Sex, Specimen part, Treatment
View SamplesPurpose: the goal of this study was to test whether the amounts of genome-encoded Line-1s are influenced by TUTases and Mov10 Methods: RNA-Seq data were obtained for PA-1 or Hek293 Flp-IN T-Rex cells in which wild-type or mutant TUTases or Mov10 were overexpressed or the proteins were depleted by RNA interference Results: Minor changes (less than 0.4-fold) were observed in the amounts of mRNAs of Homo sapiens-specific Line-1 families in Hek293 Flp-IN T-Rex and PA-1 either overexpressing or depleted of TUTases and Mov10 Overall design: LINE-1 repetitive elements profiles of Hek293 Flp-IN T-Rex and PA-1 generated by deep sequencing, in triplicate, using Illumina NextSeq 500 and Illumina HiSeq 2500.
Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s.
Cell line, Subject
View SamplesThe exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5'' UTR. Importantly, DIS3L2 contributes to surveillance of pre-snRNAs during their cytoplasmic maturation. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3'' RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis. Overall design: To investigate DIS3L2 functions genome-wide, total RNA samples were collected from model cell lines producing either WT or mut DIS3L2 three days after induction with doxycycline. The RNA samples were rRNA-depleted before preparation of strand-specific total RNA libraries according to the standard TruSeq (Illumina) protocol. TruSeq library preparation favours RNA molecules longer than 200 nt, and shorter transcripts are suboptimal for sequencing via this protocol. Thus, to obtain information about potential DIS3L2 RNA substrates with lengths between 20 and 220 nt, another RNA-Seq was carried out in parallel (with size selection through gel purification). The stable inducible HEK293 cell lines producing DIS3L2 variants were obtained using “pAL_01” and “pAL_02” plasmid constructs and the Flp-In™ T-REx™ system according to the manufacturer’s guidelines. “pAL_01” and “pAL_02” plasmids are vectors for co-expression of recoded C-terminal FLAG-tagged DIS3L2 [wild type (WT) variant or its catalytic mutant counterpart (mut), respectively] and sh-miRNAs directed against endogenous DIS3L2 mRNA.
Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs.
No sample metadata fields
View Samplesexpression profiles kPSCs versus cMSC
The human kidney capsule contains a functionally distinct mesenchymal stromal cell population.
Specimen part
View SamplesChronic kidney disease (CKD) is the gradual, asymptomatic loss of kidney function and current tests only identify it when significant loss has already happened. Using RNA sequencing in a mouse model of folic acid (FA) induced nephropathy, here we report the identification of 10 genes that track kidney fibrosis development, the common pathological finding in CKD patients. The gene expression of all 10 candidates was confirmed to be significantly high (~ 10-150 fold) in three well-established and mechanistically distinct mouse models of kidney fibrosis. Protein expression was also high in the FA model as well as patients with biopsy-proven kidney fibrosis. The specificity of these 10 candidates for kidney fibrosis was demonstrated by showing a very modest (~ 2-5 fold) increase in the mouse models of acute kidney injury as well as following liver fibrosis in mice and humans. Using targeted selected reaction monitoring mass spectrometry (SRM-MS) we found that 3 out of 10, cadherin 11 (CDH11), mannose receptor C1 (MRC1), phospholipid transfer protein (PLTP), are detectable in human urine. Furthermore, the levels of CDH11 and MRC1 are able to distinguish patients with chronic kidney disease from healthy individuals (n = 78, p<0.01). In summary, we report the identification of CDH11 and MRC1 as novel non-invasive biomarkers of CKD. Overall design: mRNA sequencing of mouse kidney before and at various time points (1,2,3,7 & 14 days) after intraperitoneal treatment with folic acid.
RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis.
No sample metadata fields
View SamplesProfiling project of a panel of tubular adenoma and serrated adenoma patient material collected in the Academic Medical Center (AMC) in Amsterdam, The Netherlands. The aim of the study was to compare the expression profiles of different types of colon cancer precursor lesions (tubular versus serrated adenomas) and determine their correspondence with a set of colon cancer patient-derived profiles that have distinct clinical outcomes.
Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions.
Specimen part
View SamplesImmunity to malaria can be acquired through natural exposure to Plasmodium falciparum (Pf), but only after years of repeated infections. Typically, this immunity is acquired by adolescence and confers protection against disease, but not Pf infection per se. Efforts to understand the mechanisms of this immunity are integral to the development of a vaccine that would mimic the induction of adult immunity in children. The current study applies transcriptomic analyses to a cohort from the rural village of Kalifabougou, Mali, where Pf transmission is intense and seasonal. Signatures that correlate with protection from malaria may yield new hypotheses regarding the biological mechanisms through which malaria immunity is induced by natural Pf infection. The resulting datasets will be of considerable value in the urgent worldwide effort to develop a malaria vaccine that could prevent more than a million deaths annually. Overall design: 108 samples; paired pre- and post-challenge for 54 individuals 198 samples; paired pre- and post-challenge for 99 individuals
Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.
No sample metadata fields
View Samples