refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 24 results
Sort by

Filters

Technology

Platform

accession-icon GSE21679
Gene signatures in wound tissue as evidenced by molecular profiling in the chicken embryo model
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Modern functional genomic approaches may help to better understand the molecular events involved in tissue morphogenesis and to identify molecular signatures and pathways. We have recently applied transcriptomic profiling to evidence molecular signatures in the development of the normal chicken chorioallantoic membrane and in tumor engrafted on the CAM. We have now extended our studies by performing a transcriptome analysis in the wound model of the chicken CAM which is another relevant model of tissue morphogenesis. To induce granulation tissue formation, we performed wounding of the chicken CAM and compared gene expression to normal CAM at the same stage of development. Matched control samples from the same individual were used. We observed a total of 282 genes up-regulated and 44 genes downregulated assuming a false-discovery rate at 5 % and a fold change > 2. Furthermore, bioinformatics analysis lead to the identification of several categories that are associated to organismal injury, tissue morphology, cellular movement, inflammatory disease, development and immune system. Endothelial cell data filtering leads to the identification of several new genes with an endothelial cell signature. In summary, the chick chorioallantoic wound model allows the identification of gene signatures involved in granulation tissue formation and neoangiogenesis. This may constitute a fertile ground for further studies.

Publication Title

Gene signatures in wound tissue as evidenced by molecular profiling in the chick embryo model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11636
Correlating global gene regulation to morphogenesis and maturation in the chick extra-embryonic vascular system
  • organism-icon Gallus gallus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. We investigated vascular development in vivo by determining global gene regulation throughout the formation of the chick chorio-allantoic membrane (CAM). Our study provides a comprehensive molecular map of vascular maturation during developmental angiogenesis and might thus be a valuable resource to streamline further research of candidates susceptible to mediate pathological angiogenesis.

Publication Title

Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14509
Transcriptome analysis of pancreatic tumor cell invasion and angiogenesis in the PDAC-CAM model
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human pancreatic adenocarcinoma cells were grafted on the chick chorioallantoic membrane (CAM). Human and chicken GeneChips were used simultaneously to study gene regulation during PDAC cell invasion.

Publication Title

Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22385
Gene profiling: U87 IRE1 dominant negative cells vs. U87ctrl cells in culture
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Transcriptome analysis was performed from human U87 glioblastoma cell clones: U87 IRE1.NCK DN (U87dn, IRE1 dominant negative) and U87 control (U87ctrl, empty plasmid). Cells were grown in DMEM supplemented with 10% FBS and glutamine for 16 hours in culture prior mRNA isolation and analyses

Publication Title

Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE14587
Genes induced by VEGF on the chick CAM after 24h
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

We determined gene expression profiles which were induced in the chick chorio-allantoic membrane 24 h after application of recombinant human VEGF.

Publication Title

Impaired angiogenesis and tumor development by inhibition of the mitotic kinesin Eg5.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74410
Prdm1
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP065344
Single-cell RNA-seq transcriptome profiling of Prdm1+ lineages in E9.5 mouse placenta
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our goal was to transcriptionally profile Prdm1+ cell lineages of maternal and embryonic origin in mid-gestation mouse placenta in order to study vascular mimicry and additional processes in the placenta. Overall design: Profiling of 61 single cells and 17 clusters of 2 or 3 cells chosen based on expression of Prdm1, a paternally inherited Prdm1-Venus fluorescent reporter, progenitor trophoblast marker Gjb3 and spiral artery trophoblast giant cell marker Prl7b1.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE74409
Molecular function of Prdm1/Blimp1 in trophoblast giant cell differentiation.
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Expression profiling of wild-type and Prdm1 null mouse trophoblast giant cell cultures using Illumina whole genome mouse V2 arrays.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE110164
Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE110058
Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming [array]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Epiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterised Smad2/3-deificient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in nave and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory element. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ lakers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation.

Publication Title

Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact