We report the cloning and sequencing of both endogenous small RNAs and virus-derived siRNAs produced by the antiviral RNAi pathway in Drosophila. We find that a diverse panel of viruses are targeted by the RNAi pathway in Drosophila to produce abundant virus-derived siRNAs, and these siRNAs map to various locations within the viral genomes. Knockdown of various RNAi and miRNA pathway components alters the levels of these viral small RNAs. Overall design: Drosophila DL1 cells were treated with dsRNA for 3 days to deplete factors involved in the antiviral RNAi pathway and miRNA pathway, then were challenged with one of four viruses for 4 days. Total RNA was collected, and the small RNA populations from 15-29 nt were cloned and sequenced.
RNase III nucleases from diverse kingdoms serve as antiviral effectors.
Cell line, Subject
View SamplesA. thaliana plants were grown in 1/2 MS medium in the presence of carbenicillin (10 µg·mL-1) for 1 or 7 days and RNA from their roots extracted and sequenced in Illumina HiSeq 2000/5000 (2x50 bp). Overall design: Total RNA obtained from A. thaliana roots grown in the absence (mock) or presence of carbenicillin (10 µg·mL-1) for 1 or 7 days. Three replicas per experiment.
β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana.
Specimen part, Subject
View SamplesOur analysis indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Overall design: Seven-day-old Arabidopsis wild-type (No-0) and 35S::KNAT1 seedlings growing in MS plates under continuous light were transferred to a liquid growing medium supplemented with 10 µM paclobutrazol (PAC) for 18 h. Seedlings were then incubated with 10 µM PAC+100 µM GA3 or maintained in 10 µM PAC for 5 h.
Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction.
Specimen part, Treatment, Subject
View SamplesWe profiled total mRNA of pancreas and kidney tissues of 3 different strains (p53-null; In4a/Arf-null and WT) of reprogrammable mouse lines (they all express OCT4, SOX2, KLF4, C-MYC under the control of a tetracycline promoter, activated by doxycycline) Overall design: 5 mice of each genotype were treated with doxycycline to induce the expression of the reprogramming factors, they were sacrificed and total mRNA was extracted from pancreas and kidney tissues (we mapped >24M reads per sample)
Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.
Specimen part, Cell line, Subject
View SamplesObesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation.
Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.
Sex, Age, Specimen part
View SamplesThis GEO submission includes RNAseq raw data (fastq) and processed data (using ASpli 1.6.0) from samples obtained in the wild type and the single prefoldin4 and lsm8 mutants in three different environmental conditions as well as in the triple prefoldin2 prefoldin4 prefoldin6 mutant growth in standard conditions. Overall design: 28 biological samples from 10 different conditions and genopypes, including the Col-0 WT in each condition (standard, cold and salt conditions)
Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.
Age, Specimen part
View SamplesAnalysis of HSCs from control and c-myc N-myc deficient long-term hematopoietic stem cells. HSCs lacking both c-myc and N-myc display increased apoptosis rates. Data provide insight into the molecular changes occuring upon complete loss of Myc activity, clarifying the resulting apoptotic mechanism and the role of Myc family proteins in HSCs.
Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.
Age, Specimen part
View SamplesAnalysis of HSCs from control and c-myc N-myc deficient long-term hematopoietic stem cells. HSCs lacking both c-myc and N-myc display increased apoptosis rates. Data provide insight into the molecular changes occuring upon complete loss of Myc activity, clarifying the resulting apoptotic mechanism and the role of Myc family proteins in HSCs and commited progenitors.
Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.
Age, Specimen part
View SamplesWound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the main events participating in the healing of a wound, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process, but allow exploring many unanswered features of the healing response; e.g., which are the signal(s) responsible for initiating tissue remodeling? How is the sealing of the epithelia achieved? Or which are the inhibitory cues that cancel the healing machinery upon completion? Answering these and other questions demands in first place the identification and functional analysis of wound-specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method to culture imaginal discs that allows live imaging and biochemical analysis and is healing-permissive. Employing this approach, we performed a comparative genome-wide profiling between those Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. This lets us identify a set of potential wound-specific genes. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in a healing assay. This non-saturated analysis defines a relevant set of new genes whose changes in expression levels are functionally significant for proper tissue repair. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound response.
Identification and functional analysis of healing regulators in Drosophila.
Specimen part, Treatment
View Samples