Transcription factor (TF)-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSC) is associated with genome-wide changes in chromatin modifications. Polycomb-mediated histone H3 lysine-27 trimethylation (H3K27me3) has been proposed as a defining mark that distinguishes the somatic from the iPSC epigenome. Here, we dissected the functional role of H3K27me3 in TF-induced reprogramming through the inactivation of the H3K27 methylase EZH2 at the onset of reprogramming. Our results demonstrate that surprisingly the establishment of functional iPSC proceeds despite global loss of H3K27me3. iPSC lacking EZH2 efficiently silenced the somatic transcriptome and differentiated into tissues derived from the three germ layers. Remarkably, the genome-wide analysis of H3K27me3 in Ezh2 mutant iPSC cells revealed the retention of this mark on a highly selected group of Polycomb targets enriched for developmental regulators controlling the expression of lineage specific genes. Erasure of H3K27me3 from these targets led to a striking impairment in TF-induced reprogramming. These results indicate that PRC2-mediated H3K27 trimethylation is required on a highly selective core of Polycomb targets whose repression enables TF-dependent cell reprogramming.
Cell reprogramming requires silencing of a core subset of polycomb targets.
Specimen part
View SamplesThe basic defect of IgA nephropathy (IgAN) lies within peripheral blood mononuclear cells rather than local kidney abnormalities. Previously we showed an altered gene expression in monocytes compared to B and T cells isolated from IgAN patients (Kidney Int, 2010), thus our aim here was to study this subset more closely at genome-wide level.
Altered monocyte expression and expansion of non-classical monocyte subset in IgA nephropathy patients.
Specimen part, Disease
View SamplesPrimary effusion lymphoma is an aggressive B-cell lymphoma most commonly diagnosed in HIV-positive patients and universally associated with Kaposis sarcoma-associated herpesvirus (KSHV). Chemotherapy treatment of PEL yields only short-term remissions in the vast majority of patients yet efforts to develop superior therapeutic approaches have been impeded by lack of animal models that more accurately mimic human disease. To address this issue we developed a direct xenograft model, UM-PEL-1, by transferring freshly-isolated human PEL cells into the peritoneal cavities of NOD/SCID mice without in vitro cell growth. We utilized this model to show that bortezomib induces PEL remission and extends overall survival of mice bearing lymphomatous effusions. Transcriptome analysis by genomic arrays revealed that bortezomib downregulated cell cycle progression, DNA replication, and Myc-target genes.
Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma.
Cell line
View SamplesGastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed.
Genome-wide expression profile of sporadic gastric cancers with microsatellite instability.
No sample metadata fields
View SamplesTranscriptome of murine testis from wild type mice and mice lacking telomerase for three generations (G3-Terc), Ku86 or both telomerase and Ku86.
Effectors of mammalian telomere dysfunction: a comparative transcriptome analysis using mouse models.
No sample metadata fields
View SamplesWe profiled total mRNA of pancreas and kidney tissues of 3 different strains (p53-null; In4a/Arf-null and WT) of reprogrammable mouse lines (they all express OCT4, SOX2, KLF4, C-MYC under the control of a tetracycline promoter, activated by doxycycline) Overall design: 5 mice of each genotype were treated with doxycycline to induce the expression of the reprogramming factors, they were sacrificed and total mRNA was extracted from pancreas and kidney tissues (we mapped >24M reads per sample)
Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.
Specimen part, Cell line, Subject
View SamplesWe used Illumina-HiSeq4000 to sequence 4sU-labelled RNA samples isolated from unchallenged and DNA damaged HeLa Flp-In cells, which revealed the nature of transcriptional response folowing genotoxic stress and the contribution of P-TEFb kinase in DNA damage-induced gene transcription. Overall design: We mock treated or treated HeLa Flp-In cells for 1 or 2 hr with DMSO, 4-NQO, or 4-NQO + flavopiridol (FP) as indicated below. During the last 30 minutes of the treatments, we labeled the RNA or not with the nucleoside analogue 4-thiouridine (500µM 4sU) for 30 minutes.
P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress.
Cell line, Subject
View SamplesGene expression profiles of 8 samples of CD34+derived normal promyelocytes
Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: Focus on DNA repair genes.
Specimen part
View SamplesWhe embryonic stem cells are in vitro expanded threir telomereres lengthen, in the absence of genetic manipulations, concomitant with the loss of heterochromatic marks. In order to analyze whether there would be changes in gene expression during in vitro expansion we performed RNA-seq and found no substantial differences in gene expression at passage 6 or 16. Overall design: Embryonic stem (ES) cells were derived from blastocysts expressing GFP in the Rosa26 locus. Four independent lines of ES were in vitro expanded to passage 16. Total RNA was extracted from each independent clones, RNA was extracted and prepared for RNA-seq.
Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations.
Specimen part, Cell line, Treatment, Subject
View SamplesRecent studies suggest that telomerase promotes cell growth by mechanisms that extend beyond the rescue of critically short telomeres. The in vitro model of mTert overexpressing MEFs recapitulates fundamental aspects of the growth-promoting effects of mTert in vivo. First, in Terc-proficient cells, mTert overexpression favors escape from replicative senescence and enhances anchorage-independent growth in response to oncogenic stress, which fits well with previous data showing that mTert overexpression promotes tumor formation. Second, in Terc-deficient cells, retroviral transduction with mTert results in a delayed onset of immortalization and impairs colony formation in response to oncogenic stress, which is in agreement with the inhibitory effect of mTert overexpression on tumorigenesis in a Terc null mouse background. To unravel the molecular targets of telomerase that impact on cell growth, we compared the transcriptome of MEFs, before and after mTert introduction. We found that ectopic expression of mTert was associated with detectable gene expression changes (greater than 1.5-fold; validated by qRT-PCR) of 26 transcripts. Analysis of the observed transcriptional changes indicates that ectopic expression of mTert suppresses in a coordinated manner functionally related genes with overlapping roles in growth arrest, resistance to transformation, and apoptosis. We show that the majority of the telomerase target genes are growth-inhibitory, transforming growth factor-beta (TGF-beta) -inducible genes and provide functional evidence for the potential of telomerase to abrogate TGF-beta -mediated growth inhibition. Thus, in line with the current view that the diversity of TGF-beta responses is not so much a consequence of the use of different signaling pathways but caused by different ways of reading the output from the same basic pathway, we propose that the telomerase status of a cell creates a gene expression pattern that determines how cells read growth inhibitory signals, among them signals propagated through the TGF-beta pathway.
Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-beta signaling.
No sample metadata fields
View Samples