RNA sequencing data for replicates of E347 driver control, E347 neuronal ablation per Shi dominant-negative expression and activation per NachBac expression to identify differences in RNA abundancy Overall design: E347 driver control, E347 neuronal ablation per Shi dominant-negative expression and activation per NachBac expression
Coordination between Drosophila Arc1 and a specific population of brain neurons regulates organismal fat.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-Risk Human Papillomavirus E7 Alters Host DNA Methylome and Represses HLA-E Expression in Human Keratinocytes.
Sex, Specimen part
View SamplesTo investigate the extent of gene expression dysregulation by the human papillomavirus (HPV) oncoprotein E7, we performed global gene expression analysis on normal immortalized keratinocytes from skin (NIKS),
High-Risk Human Papillomavirus E7 Alters Host DNA Methylome and Represses HLA-E Expression in Human Keratinocytes.
Sex, Specimen part
View SamplesHuman epidermal keratinocytes were treated with 25 ng.ml EphB2 or EFNA4, both as-Fc conjugates (Sigma).
Eph-2B, acting as an extracellular ligand, induces differentiation markers in epidermal keratinocytes.
Time
View SamplesBoth ephrins and their receptors are membrane bound, restricting their interactions to the sites of direct cell-to-cell interfaces. They are widely expressed, often co-expressed and regulate developmental processes, cell adhesion, motility, survival, proliferation, and differentiation. Both tumor suppressor and oncogene activities are ascribed to EFNs and Ephs in various contexts. A major conundrum regarding the EFN/Eph system concerns their large number and functional redundancy, given the promiscuous cross-activation of ligands and receptors and the overlapping intracellular signaling pathways. To address this issue, we treated human epidermal keratinocytes with 5 EFNAs individually and defined the transcriptional responses in the cells. We found that a large set of genes is coregulated by all EFNAs. However, while the responses to EFNA3, EFNA 4 and EFNA 5 are identical, the responses to EFNA1 and EFNA2 are characteristic and distinctive. All EFNAs induce epidermal differentiation markers and suppress cell adhesion genes, especially integrins. Ontological analysis shows that all EFNAs induce cornification and keratin genes, while suppressing wound-healing associated, signaling, receptor and ECM associated genes. Transcriptional targets of AP1 are selectively suppressed by EFNAs. EFNA1 and EFNA2, but not the EFNA3, EFNA4, EFNA5 cluster, regulate the members of the ubiquitin-associated proteolysis genes. EFNA1 specifically induces collagen production. Our results demonstrate that the EFN-Eph interactions in the epidermis, while promiscuous, are not redundant but specific. This suggests that different members of the EFN/Eph system have specific, clearly demarcated functions.
Specific and shared targets of ephrin A signaling in epidermal keratinocytes.
No sample metadata fields
View SamplesEpidermis, a continuously self-renewing and differentiating organ, produces a protective stratum corneum that shields us from external chemical, physical and microbial threats. Epidermal differentiation is a multi-step process regulated by influences, some unknown, others insufficiently explored. Detachment of keratinocytes from the basement membrane is one such pro-differentiation stimulus. Here, we define the transcriptional changes during differentiation, especially those caused by detachment from the substratum. Using comprehensive transcriptional profiling, we revisited the effects of detachment as a differentiation signal to keratinocytes. We identified the genes regulated by detachment, the corresponding ontological categories and, using metaanalysis, compared the genes and categories to those regulated by other pro-differentiating stimuli. We identified 762 genes overexpressed in suspended keratinocyte, including known and novel differentiation markers, and 1427 in attached cells, including basal layer markers. Detachment induced epidermis development, cornification and desmosomal genes, but also innate immunity, proliferation inhibitors, transcription regulators and MAPKs; conversely the attached cells overexpressed cell cycle, anchoring, motility, splicing and mitochondrial genes, and both positive and negative regulators of apoptosis. Metaanalysis identified which detachment-regulated categories overlap with those induced by suprabasal location in vivo, by reaching confluency in vitro, and by inhibition of JUN kinases. Attached and in vivo basal cells shared overexpression of mitochondrial components. Interestingly, melanosome trafficking components were also overexpressed in the attached and in vivo basal keratinocytes. Reaching confluency did not affect adhesion and ECM proteins. Lipid metabolism and steroid metabolism were induced by confluency and by JNK inhibition, respectively. These results suggest that specific pro-differentiation signals induce specific features of the keratinization process, which are in vivo orchestrated into harmonious epidermal homeostasis.
Keratinocyte detachment-differentiation connection revisited, or anoikis-pityriasi nexus redux.
Specimen part
View SamplesCultured keratinocytes treated with TNFa in the presence or absence of NFkB inhibitor; time course 1, 4, 24 & 48 hrs.
Pathway-specific profiling identifies the NF-kappa B-dependent tumor necrosis factor alpha-regulated genes in epidermal keratinocytes.
No sample metadata fields
View SamplesCultured epidermal keratinocytes treated with OsM 1, 4, 24 & 48hrs, and Skinethic epidermal substitutes treated 1, 4, 24, 48h & 7days, each with untreated control
Transcriptional responses of human epidermal keratinocytes to Oncostatin-M.
No sample metadata fields
View SamplesEpidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change the transcriptional profiles of affected cells. To define responses to two such pathways, p38 and ERK, we used SB203580 and PD98059 as specific inhibitors, and identified the regulated genes after 1, 4, 24 and 48 hrs, using Affymetrix Hu133Av2 microarrays. Additionally, we compared genes specifically regulated by p38 and ERKs with those regulated by JNK and by all three pathways simultaneously. We find that the p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes; the ERK pathway induces the expression of nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Both pathways promote epidermal differentiation and induce feedback inactivation of MAPK signaling. c-FOS, SRY and N-Myc appear to be the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are common to both. The results for the first time comprehensively define the genes regulated by the p38 and ERK pathways in epidermal keratinocytes and suggest a list of targets potentially useful in therapeutic interventions.
Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes.
Specimen part, Treatment
View SamplesLeaf development has been monitored chiefly by following anatomical markers. Analysis of transcriptome dynamics during leaf maturation revealed multiple expression patterns that rise or fall with age or that display age specific peaks. These were used to formulate a digital differentiation index (DDI), based on a set of selected markers with informative expression during leaf ontogeny. The leaf-based DDI reliably predicted the developmental state of leaf samples from diverse sources and was independent of mitotic cell division transcripts or propensity of the specific cell type. When calibrated by informative root markers, the same algorithm accurately diagnosed dissected root samples. We used the DDI to characterize plants with reduced activities of multiple CINCINNATA (CIN)-TCP growth regulators. These plants had giant curled leaves made up of small cells with abnormal shape, low DDI scores and low expression of mitosis markers, depicting the primary role of CIN-TCPs as promoters of differentiation. Delayed activity of several CIN-TCPs resulted in abnormally large but flat leaves with regular cells. The application of DDI has therefore portrayed the CIN-TCPs as heterochronic regulators that permit the development of a flexible and robust leaf form through an ordered and protracted maturation schedule.
A protracted and dynamic maturation schedule underlies Arabidopsis leaf development.
No sample metadata fields
View Samples