This SuperSeries is composed of the SubSeries listed below.
Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans.
Sex, Age, Specimen part, Disease, Race, Subject
View SamplesTranslational Relevance
Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans.
Sex, Age, Race, Subject
View SamplesHuman umbilical vein endothelial cells (HUVECs) were incubated for 48 h after transfection of scrambled siRNA or siRNA targeting Jmjd6 .
Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1.
Specimen part, Treatment
View SamplesClass IIa histone deacetylases (HDACs) are signal-responsive regulators of gene expression involved in vascular homeostasis. To investigate the differential role of class IIa HDACs for the regulation of angiogenesis, we used siRNA to specifically suppress the individual HDAC isoenzymes. Among the HDAC isoforms tested, silencing of HDAC5 exhibited a unique pro-angiogenic effect evidenced by increased endothelial cell migration, sprouting and tube formation. Consistently, overexpression of HDAC5 decreased sprout formation, indicating that HDAC5 is a negative regulator of angiogenesis. The anti-angiogenic activity of HDAC5 was independent of MEF2 binding and its deacetylase activity, but required a nuclear localization indicating that HDAC5 might affect the transcriptional regulation of gene expression. To identify putative HDAC5 targets, we performed microarray expression analysis. Silencing of HDAC5 increased the expression of fibroblast growth factor 2 (FGF2) and angiogenic guidance factors including Slit2. Antagonization of FGF2 or Slit2 reduced sprout induction in response to HDAC5 siRNA. ChIP assays demonstrate that HDAC5 binds to the promoter of FGF2 and Slit2. In summary, HDAC5 represses angiogenic genes, like FGF2 and Slit2, which causally contribute to capillary-like sprouting of endothelial cells. The de-repression of angiogenic genes by HDAC5 inactivation may provide a useful therapeutic target for induction of angiogenesis.
HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition.
Age, Specimen part, Cell line, Treatment
View SamplesEndothelial cells play an important role in maintenance of the vascular system and the repair after injury. Under pro-inflammatory conditions, endothelial cells can acquire a mesenchymal phenotype by a process named endothelial-to-mesenchymal transition (EndMT), which affects the functional properties of endothelial cells. Here, we investigated the epigenetic control of EndMT. We show that the histone demethylase JMJD2B is induced by EndMT promoting pro-inflammatory and hypoxic conditions. Silencing of JMJD2B reduced TGF-β2-induced expression of mesenchymal genes and prevented the alterations in endothelial morphology and impaired endothelial barrier function. Endothelial-specific deletion of JMJD2B in vivo confirmed a reduction of EndMT after myocardial infarction. EndMT did not affect global H3K9me3 levels but induced a site-specific reduction of repressive H3K9me3 marks at promoters of mesenchymal genes, such as Calponin (CNN1), and genes involved in TGF-β signaling, such as AKT Serine/Threonine Kinase 3 (AKT3) and sulfatase 1 (SULF1). Silencing of JMJD2B prevented the EndMT-induced reduction of H3K9me3 marks at these promotors and further repressed these EndMT-related genes. Our study reveals that endothelial identity and function is critically controlled by the histone demethylase JMJD2B, which is induced by EndMT-promoting pro-inflammatory and hypoxic conditions and support the acquirement of a mesenchymal phenotype.
The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition.
Age, Cell line, Treatment
View SamplesWe have generated transgenic mice with tetracycline-regulated conditional expression of a constitutively active allele of FoxO3 under the control of the forebrain-specific CaMKIIa promoter. In adult animals, there was a reduction of brain weight by 30% and an almost complete loss of the dorsal dentate gyrus with normal cortical layering. Interestingly, the adult mice showed motor hyperactivity and a selective loss of long-term memory with normal spatial learning. We observed enhanced apoptosis starting from day E10.5. Performing microarray expression analyses and Q-PCR validation with E12.5 forebrain RNA, we observed an over-representation of thalamic markers and an under-representation of cortical markers in transgenic as compared to control animals. Immunohistochemical data show a loss of progenitors in the lateral ventricles. Up-regulation of Pik3ip1 as a target gene of FoxO3 could be responsible for the observed increase in apoptosis. The obtained forebrain expression signature is reminiscent of a Pax6 knockdown phenotype showing that expression of this FoxO3 allele during development affected neural progenitor survival and overall brain development. Conclusion: Neural progenitors are vulnerable to constitutively active FoxO3-induced apoptosis.
Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors.
Specimen part
View SamplesAmyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS.
ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues.
Specimen part
View SamplesAutism spectrum disorders (ASDs) are a group of developmental disorders that cause variable and heterogeneous phenotypes across three behavioral domains such as atypical social behavior, disrupted communications, and highly restricted and repetitive behaviors. In addition to these core symptoms, other neurological abnormalities are associated with ASD, including intellectual disability (ID). However, the molecular etiology underlying these behavioral heterogeneities in ASD is unclear. Mutations in SHANK2 genes are associated with ASD and ID. Interestingly, two lines of Shank2 knockout mice (e6-7 KO and e7 KO) showed shared and distinct phenotypes. Here, we found that the expression levels of Gabra2, as well as of GABA receptor-mediated inhibitory neurotransmission, are reduced in Shank2 e6-7, but not in e7 KO mice compared with their own wild type littermates. Furthermore, treatment of Shank2 e6-7 KO mice with an allosteric modulator for the GABAA receptor reverses spatial memory deficits, indicating that reduced inhibitory neurotransmission may cause memory deficits in Shank2 e6-7 KO mice. This article is part of the Special Issue entitled ''Ionotropic glutamate receptors''. Overall design: Compare gene expression profiles between wild-type and knock-out mutants mice using RNA-Seq (Illumina platform: Hi-Seq 2500)
Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice.
Specimen part, Cell line, Subject
View SamplesAdenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by a family of adenosine deaminase acting on RNA (ADAR) enzymes, is important in the epitranscriptomic regulation of RNA metabolism. However, the role of A-to-I RNA editing in vascular disease is unknown. Here we show that cathepsin S mRNA (CTSS), which encodes a cysteine protease associated with angiogenesis and atherosclerosis, is highly edited in human endothelial cells. The 3' untranslated region (3' UTR) of the CTSS transcript contains two inverted repeats, the AluJo and AluSx+ regions, which form a long stem–loop structure that is recognized by ADAR1 as a substrate for editing. RNA editing enables the recruitment of the stabilizing RNA-binding protein human antigen R (HuR; encoded by ELAVL1) to the 3' UTR of the CTSS transcript, thereby controlling CTSS mRNA stability and expression. In endothelial cells, ADAR1 overexpression or treatment of cells with hypoxia or with the inflammatory cytokines interferon-? and tumor-necrosis-factor-a induces CTSS RNA editing and consequently increases cathepsin S expression. ADAR1 levels and the extent of CTSS RNA editing are associated with changes in cathepsin S levels in patients with atherosclerotic vascular diseases, including subclinical atherosclerosis, coronary artery disease, aortic aneurysms and advanced carotid atherosclerotic disease. These results reveal a previously unrecognized role of RNA editing in gene expression in human atherosclerotic vascular diseases. Overall design: 1) Evaluation of transcriptome expression and RNA editing sites (A-to-G and T-to-C nucleotide mismatches) in poly(A) RNA-seq data derived from endothelial cell transcriptome after ADAR1 or ADAR2 knockdown (n=2 biological replicates per condition, total n=8 biological samples). 2) Evaluation of transcriptome expression and RNA editing sites (A-to-G and T-to-C nucleotide mismatches) in total-RNA-seq data derived from peripheral blood mononuclear cells (n=12 total biological samples; n=4 replicates per condition). 3) Evaluation of transcriptome expression and RNA editing sites (A-to-G and T-to-C nucleotide mismatches) in total-RNA-seq data derived from endothelial cell transcriptome under basal and hypoxic conditions (n=2 biological replicates per condition, total n=4 biological samples). 4) Evaluation of RNA editing sites (A-to-G and T-to-C nucleotide mismatches) in total RNA-seq data derived from endothelial cell transcriptome under basal and hypoxic conditions after ADAR1 knockdown (n=3 replicates per condition, total n=12 biological samples). 5) HuR iCLIP RNA-sequencing data derived from HUVEC HuR iCLIP after ADAR1 knockdown (scrambled control and siADAR1, n=1 per condition, total n=2 biological samples).
Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation.
No sample metadata fields
View Samples