Potted Cabernet Sauvignon vines in the greenhouse were exposed to irrigated controls, non-irrigated water-deficits, and saline treatments for 16 days. Plant shoot tips were harvested every 4 days (0,4,8,12, and 16 days) to measure the progression of changes of global gene expression due to the stress.
Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.
Specimen part
View SamplesCancer-associated skeletal muscle fatigue is a common problem in clinical oncology that is often associated with cancer cachexia, but is not exclusively observed in cachectic patients. The majority of breast cancer (BC) patients report muscle fatigue despite cachexia being relatively rare in this patient population. The clinically relevant phenotype of muscle fatigue in the absence of frank cachexia has no established model system and no approved therapeutic agents. Here, we utilize a breast cancer patient-derived orthotopic xenograft (BC-PDOX) model to recapitulate the human phenotype of tumor-induced muscle fatigue without muscle wasting, and utilized RNA-sequencing to identify pathways contributing to this clinically common phenomenon.
Human Breast Cancer Xenograft Model Implicates Peroxisome Proliferator-activated Receptor Signaling as Driver of Cancer-induced Muscle Fatigue.
Sex, Specimen part
View SamplesHigh MC-SFA intake resulted in a downregulation of gene expression of pathways related to complement system and inflammation, and an upregulation of gene expression of pathways related to citric acid cycle, electron transport chain and lipid metabolism in adipose tissue. Based on our results, we hypothesize that the beneficial effects of MC-SFAs on prevention of fat accumulation may be mediated by increases in gene expression related to energy metabolism in the adipose tissue. Additionally, decreases in inflammation-related gene expression in the adipose may potentially have beneficial effects in relation to cardiometabolic diseases.
Dietary medium-chain saturated fatty acids induce gene expression of energy metabolism-related pathways in adipose tissue of abdominally obese subjects.
Sex, Age, Specimen part, Subject
View SamplesAnaplastic large cell lymphoma (ALCL) is a main type of T cell lymphomas and comprises three distinct entities: systemic ALK+, systemic ALK- and cutaneous ALK- ALCL. Little is known about their pathogenesis and their cellular origin, and morphological and immunophenotypical overlap exists between ALK- ALCL and classical Hodgkin lymphoma (cHL). We conducted gene expression profiling of microdissected lymphoma cells of ALK+ and ALK- systemic ALCL, cutaneous ALCL and cHL, and of eight subsets of normal T and NK cells. The analysis supports a derivation of ALCL from activated T cells, but the lymphoma cells acquired a gene expression pattern hampering an assignment to a CD4+, CD8+ or CD30+ T cell origin. Indeed, ALCL display a general down-modulation of T cell characteristic molecules. All ALCL types show significant expression of NFB target genes and upregulation of genes involved in oncogenesis (e.g. EZH2). Surprisingly few genes are differentially expressed between systemic and cutaneous ALK- ALCL despite their different clinical behaviour, and between ALK- ALCL and cHL despite their different cellular origin. ALK+ ALCL are characterized by expression of genes regulated by pathways constitutively activated by ALK. This study provides multiple novel insights into the molecular biology and pathogenesis of ALCL.
Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma.
Specimen part
View SamplesExternal stimulations of cells by hormones, growth factors or cytokines activate signal transduction pathways that subsequently induce a rearrangement of cellular gene expression. The representation and analysis of changes in the gene response is complicated, and essentially consists of multiple layered temporal responses. In such situations, matrix factorization techniques may provide efficient tools for the detailed temporal analysis. Related methods applied in bioinformatics intentionally do not take prior knowledge into account. In signal processing, factorization techniques incorporating data properties like second-order spatial and temporal structures have shown a robust performance. However, large-scale biological data rarely imply a natural order that allows the definition of an autocorrelation function. We therefore develop the concept of graph-autocorrelation. We encode prior knowledge like transcriptional regulation, protein interactions or metabolic pathways as a weighted directed graph. By linking features along this underlying graph, we introduce a partial ordering of the samples to define an autocorrelation function. Using this framework as constraint to the matrix factorization task allows us to set up the fast and robust graph decorrelation (GraDe) algorithm. To analyze the alterations in the gene response in IL-6 stimulated primary mouse hepatocytes by GraDe, a time-course microarray experiment was performed. Extracted gene expression profiles show that IL-6 activates genes involved in cell cycle progression and cell division in a time-resolved manner. On the contrary, genes linked to metabolic and apoptotic processes are down-regulated indicating that IL-6 mediated priming rendered hepatocytes more responsive towards cell proliferation and reduces expenses for the energy household.
Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation.
Specimen part, Treatment, Time
View SamplesWe generated iPSc from skin fibroblasts of two MPSIIIB patients (P1 and P2). MPSIIIB-associated cell defects were prominent in undifferentiated iPSc, in neural stem cells and in their neuronal progeny.
Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells.
Specimen part, Disease, Disease stage
View SamplesSequencing data related to our manuscript "Systematic identification of general and context-specific regulators of phagocytosis using magnetic genome-wide CRISPR screens" Overall design: Two groups of U937 cells were sequenced before and after PMA differentiation. One group carried Streptococcus pyogenes Cas9 and a safe-harbor control sgRNA, and the second group was a clonally expanded U937 line expressing GFP. Each group was separated into eight separate wells at d0, and half of the wells were treated with 50 nM PMA. At day 3, undifferentiated cells were split to prevent overcrowding, and differentiated cells were trypsinized and replated. Cells were allowed to recover for 2 additional days before cells were lysed for RNA harvest and sequencing.
Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens.
Cell line, Subject
View SamplesIn chronic lymphocytic leukemia (CLL), 13q14 and 11q22-23 deletions are found in 2/3 of the cases. 11q22-23 deletions are associated with poor survival, whereas 13q14 deletions as single abnormality are often found in indolent disease forms. The molecular basis for this difference in prognosis is not known.
Expression analysis of genes located in the minimally deleted regions of 13q14 and 11q22-23 in chronic lymphocytic leukemia-unexpected expression pattern of the RHO GTPase activator ARHGAP20.
Specimen part, Disease, Disease stage
View SamplesPurpose: CEBPA mutations are found as either biallelic (biCEBPA) or monoallelic (moCEBPA). We set out to explore whether the kind of CEBPA mutation is of prognostic relevance in cytogenetically normal AML (CN-AML).
Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The clathrin-binding domain of CALM and the OM-LZ domain of AF10 are sufficient to induce acute myeloid leukemia in mice.
Specimen part
View Samples