The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers.
Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1.
Sex, Specimen part
View SamplesGSM48315-GSM48332: Ten cells from C57Bl/6 male mouse bone marrow (SP or CD8 T cells) were sorted into individual wells of 96-well plates. The mRNA of these cells was amplified by the global single cell RT-PCR method and biotinylated targets were generated after optimal digestion with DNAse I.
Evidence for diversity in transcriptional profiles of single hematopoietic stem cells.
No sample metadata fields
View SamplesNPTX1 is a key inducer of neural lineages from the human ESC.
NPTX1 regulates neural lineage specification from human pluripotent stem cells.
Cell line, Time
View SamplesWe did the RNA-seq analysis to examine the global impact of Nicotinamide (NAM) on hiPSC-derived RPE transcriptome in order to better understand the mechanism of action of NAM. NAM inhibited the expression of Age related Macular degeneration (AMD) associated protein transcripts in hiPSC-derived RPE. Overall design: Seven hiPSC-RPE lines (4 AMD donors and 3 Control donors) that had been cultured with 10mM NAM or vehicle for three weeks were used for RNA extraction and RNA-seq analysis. We treated 4 AMD hiPSC-RPE and 3 Control hiPSC-RPE lines with 10mM NAM or vehicle.
Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.
Sex, Age, Specimen part, Disease, Treatment, Subject
View SamplesTo assess gene expression changes in Irgm1 (Lrg-47) deficient HSCs
Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.
No sample metadata fields
View SamplesHematopoietic stem cells (HSC) continuously regenerate a complete hematologic and immune system. Very few genes that regulate this process have yet been identified. In order to identify factors governing differentiation, we have compared the transcriptome of highly purified HSC with their differentiated progeny, including erythrocytes, granulocytes, monocytes, NK cells, activated and nave T-cells, and B-cells. Chromosomal analysis revealed that HSC were more transcriptionally active than other cell types across most chromosomes. Each lineage expressed ~100 to 400 genes uniquely, including many previously uncharacterized genes. Overexpression of two fingerprint genes resulted in a significant bias in differentiation indicating a role in cell fate determination, demonstrating the utility of these data for modulation of specific cell types.
Hematopoietic fingerprints: an expression database of stem cells and their progeny.
No sample metadata fields
View SamplesThis dataset details the time-dependent response of human Huh7 hepatoma cells to type I and type III IFN.
Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression.
Cell line, Treatment, Time
View SamplesSelenium (Se) is an essential nutrient for beef cattle health and commercial production. The molecular mechanisms responsible for the physiological responses of the animal to dietary Se supplementation, however, have not been evaluated. Furthermore, the potential effect of two chemical forms (organic vs. inorganic) of Se on gene expression by Se-sufficient cattle has not been evaluated.
Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations and liver gene expression profiles of growing beef heifers.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The blood transcriptional signature of chronic hepatitis C virus is consistent with an ongoing interferon-mediated antiviral response.
No sample metadata fields
View SamplesThis study characterizes the effects of chronic Hepatitis C virus (HCV) infection on gene expression by analyzing blood samples from 10 treatment-naive HCV patients and 6 healthy volunteers.
The blood transcriptional signature of chronic hepatitis C virus is consistent with an ongoing interferon-mediated antiviral response.
No sample metadata fields
View Samples