Chronic loss of Lasp1 alters the expression of other genes associated with cell motility/attachment, and/or other cellular functions. Results provide new information showing that loss of Lasp1 leads to up- and down-regulation of genes involved in cell motility/attachment/growth.
Lasp1 gene disruption is linked to enhanced cell migration and tumor formation.
No sample metadata fields
View SamplesMicroglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2(-/-)) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2(-/-) microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2(-/-) microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage.
TREM2 regulates microglial cell activation in response to demyelination in vivo.
No sample metadata fields
View SamplesWe performed a microarray experiment to assess the global changes in transcription occurring in leaves and roots of the vitamin B6 deficient pdx1.3 knockout mutant in comparison to WT. Vitamin B6 (pyridoxal 5-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant.
Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.
Specimen part
View SamplesEBF1 is essential for B cell specification and commitment. To explore the dynamics of EBF1 initiated B cell programming, we performed EBF1 ChIP-seq, ATAC-seq, bisulfite-seq, RNA-seq and several histone ChIP-seq analyses at different stages of the transition from Ebf1-/- pre-pro-B to pro-B triggered by EBF1 restoration. We also performed Pax5 ChIP-seq in Ebf1-/- pre-pro-B cell and EBF1-restored pro-B cell to study the pioneering function of EBF1 that allows other transcription factors to access certain chromatin sites. Overall design: Time series RNA-Seq analysis during the differentiation from Ebf1-deficient pre-pro-B cell to EBF1-restored pro-B cell.
Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming.
Subject
View SamplesGlucose intolerance and diabetes mellitus are classical parts of endogenous Cushings syndrome (CS), and insulin resistance is a feature of cortisol excess. CS patients display characteristics including hyperglycemia, abdominal obesity, reduced high-density lipoprotein cholesterol levels and elevated triglycerides, and arterial hypertension. Hypercortisolism is a well known cause of bone loss, and patients with CS frequently display low bone mass and fragility fractures. Cortisol excess inhibits bone formation, increases bone resorption, impairs calcium absorption from the gut, and affects the secretion of several hormones, cytokines, and growth factors with potential influence on bone metabolism. Bone biopsies from nine CS patients, before and mean 3 months after surgery, were screened for expressional candidate genes using Affymetrix human Gene Plus 2.0 Arrays. Analyses were performed to identify genes in glucocorticoid-induced osteoporosis and genes in glucose metabolism and energy homeostasis.
The glucocorticoid-induced leucine zipper gene (GILZ) expression decreases after successful treatment of patients with endogenous Cushing's syndrome and may play a role in glucocorticoid-induced osteoporosis.
Sex, Age, Specimen part
View SamplesTranscriptional changes upon elicitor treatment over time (0, 30, 60 min) have been analysed with the A.thaliana Landsberg (wt) and fls2-17 (flagellin receptor mutant).
Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.
Age, Compound, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.
Sex, Specimen part, Time
View SamplesTo understand the temporal changes occurring in adipose tissue gene expression during a one-year weightloss intervention, adipose tissue biopsies were collected from 19 healthy obese individuals at three time points.
Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.
Sex, Specimen part, Time
View SamplesOral cancer kills about 1 person every hour each day in the United States and is the 6th most prevalent cancer worldwide. In this study we utilized existing microarray data from a prior oral cancer study to examine the role of chronic pro-inflammatory mediators in oral carcionogenesis by comparing gene expression in oral tumors with adjacent non-tumor oral tissue from the same patient
Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.
Disease, Subject
View SamplesThis study aimed to explore the role of NIPP1 in adult germline cell proliferation and differentiation, using a ubiquitous inducible NIPP1 knockout (TKO) mouse model. To gain unbiased insight into the molecular mechanism that underly the sertoli-only phenotype in TKO, we performed a comparative RNA sequencing profiling of control and TKO, in which NIPP1 was tamoxifin-induced depleted. Overall design: Two genotypes are compared after treatment with tamoxifen. The control genotype (UBC CRE-ERT2+/- Ppp1r8 fl/+) looses the floxed allele of PPP1R8 (aka NIPP1) as a consequence of the treatment with tamoxifen and becomes heterozygous for PPP1R8. The KO genotype (UBC CRE-ERT2+/- Ppp1r8 fl/-) also looses the floxed allele of PPP1R8 as a consequence of the tamoxifen treatment and becomes homozygous KO. For each genotype, 4 replicates are profiled.
The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis.
Age, Specimen part, Subject
View Samples