refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE33923
2C::tomato ES cells, 2-cell embryos and wild type oocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE33763
Expression data from 2C::tomato+ vs 2C::tomato - ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared gene expression from 2C::tomato+/- ES cells from Kdm1a wt and mutant ES cultures

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP009468
RNA-Seq from two-cell (2C) stage embryos
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To determine gene expression in 2 cell stage embryos Overall design: 3 Replicates of litters of wild type 2 cell stage embryos

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP011988
RNA-Seq from wt and G9A knockout ES cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To measure gene expression difference between wt and g9A knockout ES cells Overall design: G9A TT2 ES cells (Yokochi et al) were treated with Veh. Or 4OHT (to delete G9A)

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP009467
mRNA-Seq of 2C::tomato+ vs. - ES cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We identified/quantified genes and repeat elements enriched within 2C::tomato+ cells vs. 2C::tomato - cells Overall design: 2C::tomato + and - cells were collected by FACS for RNA-Seq analysis

Publication Title

Embryonic stem cell potency fluctuates with endogenous retrovirus activity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP066961
Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

We investigated microRNA expression in motoneurons by performing small RNA sequencing of fluorescence-activated cell sorting (FACS)-isolated motoneurons labelled with the Hb9:gfp transgenic reporter and Hb9:gfp negative non-motoneurons including spinal interneurons. We find that one microRNA, microRNA-218, is highly enriched and abundantly expressed in motoneurons. Furthermore, we find that miR-218 is transcribed from alternative, motoneuron-specific alternative promoters embedded within the Slit2 and Slit3 genes by performing RNA sequencing of FACS-isolated motoneurons and a dissected embryonic floor plate cells which served as a control. Next, we performed RNA sequencing of FACS-isolated wild type (WT) motoneurons and motoneurons lacking miR-218 expression (218DKO motoneurons), and find that a large set of genes (named ''TARGET218'' genes) with predicted miR-218 binding sites are de-repressed in the absence of miR-218 expression. Finally, we examine the expression of TARGET218 genes in other neuronal subpopulations by FACS-isolating V1, V2a, and V3 interneurons expressing Cre-inducible fluorescent reporters and performing RNA sequencing. We find that the TARGET218 network of genes is depleted in wild-type motoneurons versus these interneuron types. Additionally, these genes are expressed at similar levels in 218DKO motoneurons compared with interneuron subtypes, suggesting that this genetic network. Overall design: Examination of mRNA expression in spinal progenitor, glial, and neuronal subpopulations.

Publication Title

Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP028384
PAR-CLIP for HA-tagged EZH2 in mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This experiment was designed to indentify RNAs making direct contact with EZH2 in mouse embryonic stem cells Overall design: E14 with an integrated transgene encoding HA-EZH2 were pulsed with 4-SU, irradiated with UV, and subjected to HA immunoprecipitation.

Publication Title

PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP028385
RNA seq in two lines of E14 mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This experiment was designed to obtain the polyA+ transcriptome in E14 ESCs Overall design: PolyA+ RNA was extracted and purified from two separate clones of E14, which were treated as biological replicate

Publication Title

PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP034666
PAR-CLIP-seq reveals RNAs directly interacting with CTCF in human transformed cell line U2OS
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

This experiment sought to determine the genome-wide interactome of CTCF in human cells. Overall design: PAR-CLIP seq for CTCF was performed in U2OS cells in 2 biological replicates

Publication Title

CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP019946
SFMBT1 Functions with LSD1 to Regulate Expression of Canonical Histone Genes and Chromatin-Related Factors [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

SFMBT1 is a poorly characterized mammalian MBT domain-containing protein homologous to Drosophila SFMBT, a Polycomb group protein involved in epigenetic regulation of gene expression. Here, we show that SFMBT1 regulates transcription in somatic cells and during spermatogenesis through the formation of a stable complex with LSD1 and CoREST. When bound to its gene targets, SFMBT1 recruits its associated proteins and causes chromatin compaction and transcriptional repression. SFMBT1, LSD1, and CoREST share a large fraction of target genes including those encoding replication-dependent histones. Simultaneous occupancy of histone genes by SFMBT1, LSD1, and CoREST is regulated during the cell cycle and correlates with the loss of RNA polymerase II at these promoters during G2, M, and G1. The interplay between the repressive SFMBT1–LSD1–CoREST complex and RNA polymerase II contributes to the timely transcriptional regulation of histone genes in human cells. SFMBT1, LSD1, and CoREST also form a stable complex in germ cells and their chromatin binding activity is regulated during spermatogenesis. Overall design: RNA-seq in HeLaS3 cells ctrl compared to triple knockdown for SFMBT1, CoREST, and LSD1

Publication Title

SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact