This SuperSeries is composed of the SubSeries listed below.
Autoregulation of Th1-mediated inflammation by twist1.
No sample metadata fields
View SamplesGene expression profiling of repeatedly activated compared to recently activated Th1 cells to identify genes that play a role in chronic inflammatory disorders and may qualify as diagnostic or therapeutic targets;
Autoregulation of Th1-mediated inflammation by twist1.
No sample metadata fields
View SamplesThe basic helix-loop-helix transcriptional repressor twist1, as an antagonist of nuclear factor B (NF-B)-dependent cytokine expression, is involved in the regulation of inflammation-induced immunopathology. We could show that twist1 is expressed by activated T helper (Th) 1 effector memory cells. Induction of twist1 in Th cells is dependent on NF-B, nuclear factor of activated T cells (NFAT), and interleukin (IL)-12 signaling via signal transducer and activator of transcription (STAT) 4. Expression of twist1 is transient following T-cell receptor engagement, and increases upon repeated stimulation of Th1 cells. Imprinting for enhanced twist1 expression is characteristic of repeatedly restimulated effector memory Th cells and thus of the pathogenic memory Th cells of chronic inflammation. Th lymphocytes from the inflamed joint or gut tissue of patients with rheumatic diseases, Crohns disease or ulcerative colitis express high levels of twist1. Expression of twist1 in Th1 lymphocytes limits the expression of the cytokines interferon-, IL-2 and tumor necrosis factor-, and ameliorates Th1-mediated immunopathology in delayed-type hypersensitivity and antigen-induced arthritis. In order to identify the effect of twist1 expression on the function of Th cells, twist1 was ectopically expressed and the transcriptome was compared to empty-virus infected control cells. In addition, this experiment allows for the identification of genes regulated by the transcription factor twist1.
Autoregulation of Th1-mediated inflammation by twist1.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis.
Specimen part, Cell line
View SamplesThe unfolded protein response (UPR) is activated in response to hypoxia-induced stress such as in the tumor microenvironment. This study examined the role of CREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the UPR, in breast cancer development and metastasis. Initial experiments identified the loss of CREB3L1 expression in metastatic breast cancer cell lines compared to low- or non-metastatic cell lines. When metastatic cells were transfected with CREB3L1 they demonstrated reduced invasion and migration in vitro, as well as a significantly decreased ability to survive under non-adherent or hypoxic conditions. Interestingly, in an in vivo rat mammary tumor model, CREB3L1 expressing cells not only failed to form metastases compared to CREB3L1 null cells but regression of the primary tumors was seen in 70% of the animals as a result of impaired angiogenesis. Microarray and ChIP on Chip analyses identified changes in the expression of many genes involved in cancer development and metastasis, including a decrease in those involved in angiogenesis. These data suggest that CREB3L1 plays an important role in suppressing tumorgenesis and loss of expression is required for the development of a metastatic phenotype.
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis.
Specimen part, Cell line
View SamplesmDC and pDC exhibit distinct TLR expression pattern and differ in their responses to various TLR ligands. The goal of this study was to identify genes, that were differentally expressed between mDC and pDC as a means to determine how TLR signaling pathways operate. Suprisingly, expression of TLR-assoociated signaling proteins were found to be present at equivalent levels between mDC and pDC, despite differential expression of TLRs, and thus revealing insight into use of adaptor proteins that function as general regulators of TLR signaling pathways in both cell types.
A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction.
Specimen part
View SamplesThe apical junctional complex (AJC), composed of tight junctions and adherens junctions, is essential for maintaining epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are both associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating AJC integrity in the small airway epithelium (SAE), the primary site of pathological changes in COPD. Transcriptome analysis revealed a global down-regulation of physiological AJC gene expression in the SAE of healthy smokers (n=53) compared to healthy nonsmokers (n=59), an observation associated with changes in molecular pathways regulating epithelial differentiation such as PTEN signaling and accompanied by induction of cancer-related AJC genes. Genome-wide co-expression analysis identified a smoking-sensitive AJC transcriptional network. The overall expression of AJC-associated genes was further decreased in COPD smokers (n=23). Exposure of human airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC-related genes, accompanied by decreased transepithelial resistance. Thus, cigarette smoking alters the AJC gene expression architecture in the human airway epithelium, providing a molecular basis for the dysregulation of airway epithelial barrier function during the development of smoking-induced lung disease.
Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo.
Sex, Age
View SamplesPurpose: study the role of MALT1 auto-proteolysis in T cell receptor mediated activation of NF-kB. Methods: Jurkat cells were generated that express wild type MALT1, the auto-cleavage deficient MALT1-R149A mutant, the catalytic inactive MALT1-C464A mutant or the R149A-C464A double mutant (RACA). Expression of endogenous MALT1 was inactivated using TALEN technology for the Jurkat cells expressing MALT1-R149A (JDM-RA) and MALT1-C464A (JDM-CA). Illumina HISeq 2000 deep sequencing was performed to determine the mRNA profiles for MALT1, JDM-RA, JDM-CA and RACA cells in unstimulated conditions or after treatment with 75ng/ml PMA and 150 ng/ml ionomycin for 3 or 18 hrs. Results: PMA ionomycin stimulation of the MALT1 auto-cleavage defective JDM-RA cells fails to activate NF-kB-dependent transcription like for the MALT1 catalytic inactive JDM-CA cells and the double RACA mutant cells. Conclusion: MALT1 autoproteolysis is essential for transcription of NF-kB target genes Overall design: mRNA profiles of Jurkat expressing MALT1, MALT1-R149A, MALT1-C464A and MALT1-R149A-C464A after 0, 3 and 18 hours of stimulation with PMA and Ionomycin were generated by deep sequencing, in duplicate, using Illumina HISeq 2000
MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes.
No sample metadata fields
View SamplesThe initiation of the mucosal immune response in Peyers patch (PP) relies on the sampling, processing and efficient presentation of foreign antigens by dendritic cells (DC). PP DC encompass five subsets, among which CD11b+ conventional DC (cDC) and LysoDC have distinct progenitors and functions but share many cell surface markers. This has previously led to confusion between these two subsets. In addition, another PP DC subset, termed double-negative (DN), remains poorly characterized. Here, we have studied the genetic relatedness of the different subsets of PP cDC at steady state and under TLR7 ligand stimulation. We also provide the transcriptional profiles of subepithelial TIM-4- and interfollicular TIM-4+ macrophages.
Distribution, location, and transcriptional profile of Peyer's patch conventional DC subsets at steady state and under TLR7 ligand stimulation.
Sex, Age, Specimen part, Treatment
View SamplesThe liver parenchyma is composed of hepatocytes and bile duct epithelial cells (BECs). Controversy exists regarding the cellular origin of human liver parenchymal tissue generation during embryonic development, homeostasis or repair. Here we report the existence of a hepatobiliary hybrid progenitor (HHyP) population in human fetal liver using single-cell RNA sequencing. HHyPs are anatomically restricted to the ductal plate of fetal liver and maintain a unique transcriptional profile distinct from fetal hepatocytes, mature hepatocytes and mature BECs. In addition, molecular heterogenicity within the EpCAM+ population of freshly isolated fetal and adult human liver reveals diverse gene expression signatures of hepatic and biliary lineage potential. Finally, we FACS isolated fetal HHyPs and confirmed their hybrid progenitor phenotype in vivo. Our study suggests that hepatobiliary progenitor cells previously identified in mice also exist in humans, and can be distinguished from other parenchymal populations, including mature BECs, by distinct gene expression profiles. Overall design: Primary samples from 5 2nd trimester human fetal livers and 3 uninjured adult human livers for single cell RNA sequencing by Smartseq2.
Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors.
No sample metadata fields
View Samples