Essential fatty acids (FA) are not only energy-rich molecules; they are also an important component of the membrane bilayer and recently have been implicated in induction of fatty acid synthase (FAS) and other genes. Using gene chip analysis, we have found that arachidonic acid (AA), an omega-6 fatty acid, induced 11 genes that are regulated by NFkappaB. We verified gene induction by omega-6 fatty acids including COX2, IKBA, NFKB, GMCSF, IL1B, CXCL1, TNFA, IL6, LTA, IL8, PPARG, and ICAM1 using qRTPCR. PGE2 synthesis was increased within 5min of addition of AA. Analysis of upstream signal transduction showed that within 5min of FA addition, phophatidylinositol 3-kinase (PI3K) was significantly activated followed by activation of Akt at 30min. ERK1 and 2, p38, and SAPK/JNK were not phosphorylated after omega-6 FA addition. Thirty minutes after FA addition, we found a significant 3-fold increase in translocation of NFkappaB transcription factor to the nucleus. Addition of non-steroidal anti-inflammatory drug (NSAID) caused a decrease in cox-2 protein synthesis, PGE2 synthesis as well as inhibition of PI3K activation. We have previously shown that AA induced proliferation is also blocked (P<0.001) by PI3K inhibitor LY294002. LY294002 also significantly inhibited the AA induced gene expression of COX2, IL1B, GMCSF, and ICAM1. Taken together, the data suggests that AA via conversion to PGE2 plays an important role in stimulation of growth related genes and proliferation via PI3K signaling and NFkappaB translocation to the nucleus.
Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer.
No sample metadata fields
View SamplesMononucleotide A and T repeats are abundant in human genome. Many of A repeats are bound by Argonaute proteins (AGOs). To evaluate the role of AGOs and A repeats in gene regulation, HEK293 cells were treated with 8-amino-3,6-dioxaoctanoic acid added peptide nucleic acid (PNA) AAAAAAAAAAAAAAA oligo (OO-A(15)).
Upstream mononucleotide A-repeats play a cis-regulatory role in mammals through the DICER1 and Ago proteins.
Cell line, Treatment
View SamplesThis study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in microgravity (mg). Immunosuppression during spaceflight is a major barrier to safe long-term human space habitation and travel. The goals of these experiments were to prove that mg was the cause of impaired T cell activation during spaceflight as well as understand the mechanisms controlling early T cell activation. T cells from 4 human donors were stimulated with concanavalin A (ConA) and anti-CD28 onboard the International Space Station (ISS). An onboard centrifuge was used to generate a 1g simultaneous control to isolate the effects of mg from other variables of spaceflight. Microarray expression analysis after 1.5 hours of activation demonstrated that mg- and 1g-activated T cells had distinct patterns of global gene expression and identified 47 genes that were significantly differentially down-regulated in mg. Importantly, several key immediate early genes were inhibited in mg.
The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity.
Specimen part, Treatment
View SamplesC/EBPbeta-2 results in EMT and ErbB indpendence this project investigated the gene changes in related genes upon C/EBPbeta-2 overexpression in MCF10A cells.
Genomic profiling of C/EBPβ2 transformed mammary epithelial cells: a role for nuclear interleukin-1β.
Cell line
View SamplesBackground: NK cells during chronic viral infection have been well studied over the last decade. We performed an unbiased next-generation RNA-sequencing approach to identify commonalities or differences of the effect of HIV, HCV and HBV viremia on NK cell transcriptomes. Methods: Using cell sorting, we obtained CD3-CD56+ NK cells from blood of 6 HIV, 11 HCV, and 32 HBV infected and untreated patients. Library preparation and sequencing were done using Illumina mRNA-Seq Sample Prep Kit and the HiSeq 2000, HiSeq2500 or NextSeq 500, and further analysis by an in-house analytic pipeline. Results: In NK cells from HIV, HCV and HBV patients, transcriptome analysis identified 272, 53, and 56 differentially expressed genes, respectively (fold change >1.5, q-value 0.2). Interferon stimulated genes were induced in NK cells from HIV/HCV patients, but not during HBV infection. HIV viremia downregulated ribosome assembly genes in NK cells. In HBV, viral load and ALT variation had little effect on genes related to NK effector function. Conclusion: We compare, for the first time, NK cell transcripts of viremic HIV, HCV and HBV patients. We clearly demonstrate distinctive NK cell gene signatures in 3 different populations, suggestive for a different degree of functional alterations of the NK cell compartment as compared to healthy individuals. Overall design: We analyzed NK cell transcripts collected from the blood of well-characterized chronic HBV patients (n=32), chronic HCV patients (n=8), and HIV patients (n=6). Differential gene expression analysis, global module analysis, and unsupervised clustering analysis were performed by employing RNA-sequencing on blood NK cell transcriptomes.
Persistent Replication of HIV, Hepatitis C Virus (HCV), and HBV Results in Distinct Gene Expression Profiles by Human NK Cells.
Sex, Specimen part, Disease, Subject
View SamplesKeloids are benign tumors of the dermis that form during a protracted wound healing process. Susceptibility to keloid formation occurs predominantly in people of African and Asian descent. The key alteration(s) responsible for keloid formation has not been identified and there is no satisfactory treatment for this disorder. The altered regulatory mechanism is limited to dermal wound healing, although several diseases characterized by an exaggerated response to injury are prevalent in individuals of African ancestry. We have observed a complex pattern of phenotypic differences in keloid fibroblasts grown in standard culture medium or induced by hydrocortisone. In this study Affymetrix-based microarray was performed on RNA obtained from fibroblasts cultured from normal scars and keloids grown in the absence and presence of hydrocortisone. We observed differential regulation of approximately 500 genes of the 38,000 represented on the Affymetrix chip. Of particular interest was increased expression of several IGF-binding and IGF-binding related proteins and decreased expression of a subset of Wnt pathway inhibitors and multiple IL-1-inducible genes. Increased expression of CTGF and IGFBP-3 was observed in keloid fibroblasts only in the presence of hydrocortisone. These findings support a role for multiple fibrosis-related pathways in the pathogenesis of keloids
Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways.
No sample metadata fields
View SamplesThermal injury incites inflammatory responses that often transcend the local environment and lead to structural deficiencies in skin that give way to scar formation. We hypothesized that extensive perturbations within burned skin following thermal insult and during subsequent events of wound repair induce vast alterations in gene expression that likely serve as a wound and systemic healing deterrent. A high-throughput microarray experiment was designed to analyze genetic expression patterns and identify potential genes to target for therapeutic augmentation or silencing. The study compares gene expression from burn wound margins at various times following thermal injury to expression observed in normal skin. Utilizing this design, we report that the totality of gene expression alterations is indeed enormous. Further, we observed that the differential expression of many inflammatory and immune response genes appear to be continually up-regulated in burn wound margins seven days or more after initial thermal insult. As it is well established that the inflammatory process must abate for wound healing to proceed, the finding of ongoing local inflammation is cause for further investigation. To our knowledge, this is the first report of the gene expression alterations induced by thermal injury of human skin. As such, it provides a wealth of data to mine with the ultimate goal of better understanding the local pathophysiologic changes at the site of thermal injury that not only affect wound healing capacity, but may also contribute to systemic derangements within the burn patient.
A microarray analysis of temporal gene expression profiles in thermally injured human skin.
Sex
View SamplesLittle is known on the immune status in liver and blood of chronic HCV patients long after therapy-induced viral clearance. In this study, we demonstrate that 4 years after clearance, regulation of HCV-specific immunity in blood by regulatory T-cells (Treg) and the immunosuppressive cytokines IL-10 and TGF- is still ongoing. Importantly, sampling of the liver 4 years after clearance shows that intrahepatic Treg are still present in all patients, suggesting that liver T-cells remain regulated. Identifying mechanisms that regulate HCV-specific memory T-cell responses after clearance is highly relevant for the development of protective vaccines, especially in patients at high-risk of reinfection.
The Intrahepatic T Cell Compartment Does Not Normalize Years After Therapy-Induced Hepatitis C Virus Eradication.
Sex, Specimen part, Race
View SamplesIn the past decade, several transcription factors critical for pancreas development have been identified. Despite this success, many of the cell surface and extracellular factors necessary for proper islet morphogenesis and function remain uncharacterized. Previous studies have shown that transgenic over-expression of the transcription factor HNF6 specifically in the pancreatic endocrine cell lineage resulted in the disruption of islet morphogenesis, including dysfunctional endocrine cell sorting, increased islet size, and failure of islets to migrate away from the ductal epithelium. We exploited the dysmorphic islets in pdx1PBHnf6 animals as a tool to identify factors important for islet morphogenesis. Genome-wide microarray analysis was used to identify differences in the gene expression profiles of late gestation and early postnatal pancreas tissue from wild type and pdx1PBHnf6 animals. We report the identification of genes with an altered expression in HNF6 Tg animals and highlight factors with potential importance in islet morphogenesis.
Gene expression profiling of a mouse model of pancreatic islet dysmorphogenesis.
Specimen part
View SamplesGlioblastoma multiforme is the most common and aggressive form of brain cancer. The use of oncolytic HSV-1 (oHSV) to selectively target brain cancer cells leading to their lytic destruction has shown to be very promising in a preclinical setting, but is lacking efficacy in clinical trials. Cyr61, a secreted extracellular matrix protein which functions to promote angiogenesis, migration, proliferation and tumorigenesis, was found to be upregulated rapidly following oHSV infection. Here we show, using microarray analysis, that Cyr61 expression leads to the induction of several genes with type 1 interferon function. We show that Cyr61 mediated type 1 IFN induction is through its interaction with integrin alpha6beta1 on the cell surface and results in oHSV inhibition, reducing the efficacy of this therapy.
Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma.
Cell line
View Samples