This SuperSeries is composed of the SubSeries listed below.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View Samples