Laser capture microdissected choroid plexuses were obtained and expression arrays were generated to investigate gene expression in wt and ApoE choroid plexuses; the choroid plexus forms the cerebrospinal fluid, the cerebrospinal fliod barrier, functions as the major gateway for blood-born leukocytes to enter the brain in degenerative and inflammatory brain diseases, and the principal neuroimmune interface in the brain. We found lipid deposits in the aged choroid plexus of hyperlipidemic mice but none in the wt control choroid plexuses. Here, we studied the functional impact and gene epressions in wt and ApoE-deficient choroid plexuses.
ApoE attenuates unresolvable inflammation by complex formation with activated C1q.
Sex, Age, Specimen part
View SamplesComparative analysis of FACS-sorted CCR2- and CCR2+ HSC in the steady state. CCR2+ HSC have fourfold higher proliferative rates than CCR2- HSC, are are biased towards the myeloid lineage and dominate the migratory HSC population.
Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells.
Specimen part
View SamplesThe study of the role of Drosophila Ada2b SAGA histone acetyltransferase component at early pupal stage (P4)
Genes of the ecdysone biosynthesis pathway are regulated by the dATAC histone acetyltransferase complex in Drosophila.
Sex, Age, Time
View SamplesT4 and T5 neurons are components of the neuronal circuit for motion vision in flies. To identify genes involved in neuronal computation of T4 and T5 neurons, we perfomed transcriptome analysis. Nuclei of T4 and T5 neurons were immunoprecipitated, total RNA was harvested and used for mRNA-seq with Illumina technology. In two biological replicates, we mapped 154 and 119 million reads to D. melanogaster genome. mRNA-seq provided information about expression levels of 17,468 annotated transcripts in the T4 and T5 neurons. Overall design: Cell type – specific transcriptome analysis of the RNA isolated from immunoprecipitated nuclei, performed in two biological replicates
RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila.
Subject
View SamplesRNA seq analyses were performed in granulosa cells (GCs) collected from gonadotropin treated ESR2 mutant rats. Data obtained from a null mutant with Esr2 exon 3 deletion (?3) and another DNA binding domain (DBD) mutant with exon 4 deletion (?4) were compared to that of wildtype (WT) rats. The raw data were analyzed using CLC genomics workbench. High quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Differentially expressed genes in ?3 or ?4 Esr2-mutant GCs were identified based on the following criteria: FDR p-Value =0.05 and an absolute fold change of 2. Fewer differentially expressed genes were identified in ?3 compared to the ?4 mutant group. As both of the mutant groups demonstrated a common phenotype of ovulation failure, differentially expressed genes common to both in ?3 and ?4 mutant rats were emphasized and further analyzed in the companion article “ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation” (Khristi et al., 2018).
ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.
Cell line, Time
View SamplesBTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements (MAREs) at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAREs, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we performed knock-down of BACH1 in HEK 293T cells using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays.
The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.
Cell line, Time
View SamplesThe Iroquois homeodomain transcription factor gene IRX3 is highly expressed in the developing nervous system, limb buds and heart. In adults, expression levels specify risk of obesity. We now report a significant functional role for IRX3 in human acute leukemia. While transcript levels are very low in normal human bone marrow cell populations, high level IRX3 expression is observed in ~30% of patients with acute myeloid leukemia (AML), ~50% of patients with T-acute lymphoblastic leukemia and ~20% of patients with B-acute lymphoblastic leukemia, typically in association with high levels of HOXA9. Expression of IRX3 alone was sufficient to immortalise murine bone marrow stem and progenitor cells, and induce T- and B-lineage leukemias in vivo with incomplete penetrance. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine bone marrow stem and progenitor cells substantially enhanced the morphologic and phenotypic differentiation block of the resulting AMLs by comparison with Hoxa9-only leukemias, through suppression of a myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 modulates the cellular consequences of HOX gene expression to enhance differentiation block in human AML. Overall design: Murine acute myeloid leukemias - 3 samples from separate mice with AML initiated by HOXA9 and 3 samples from separate mice with AML initiated by HOXA9 and IRX3 coexpression
Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia.
Specimen part, Cell line, Subject
View SamplesThe activation of endothelium by tumor cells is one of the main steps by tumor metastasis. The role of the blood components (platelets and leukocytes) in this process remain unclear.
Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes.
Specimen part
View SamplesIt It is known that functional maturation of the small intestine occurring during the weaning period is facilitated by glucocorticoids (such as hydrocortisone, HC) including the increased expression of digestive hydrolases. However, the molecular mechanism(s) are not well understood, particularly in human gut. Here we report a microarray analysis of HC- induced changes in gene expression in H4 (a human fetal small intestinal epithelial cell line well-characterized in numerous previous studies). This study identified a large number of HC-affected genes, some involved in metabolism, cell cycle regulation, cell polarity, tight junction formation, and interactions with extracellular matrices. These effects could play an important role in HC-mediated enterocyte maturation in vivo and in vitro.
Hydrocortisone induces changes in gene expression and differentiation in immature human enterocytes.
Cell line, Treatment
View Samples