Cells were grown to saturation in YPD (YEP + 2% glucose) for 24 hours, diluted into YPA (YEP + 2% potassium acetate) at OD600= 0.3 and grown over night at 30C. Cells were washed with sterilized water the next day and re-suspended in SPII medium (0.3% potassium acetate, pH = 7.0) at OD600= 1.9 to induce sporulation. Cells were sporulated at room temperature or 30C as indicated. Sporulation medium containing benomyl was always prepared freshly on the day of the experiment following the directions in {Shonn, 2000 #90}. Briefly, DMSO (dimethyl sulfoxide, Sigma-Aldrich) or benomyl [Methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate, Sigma-Aldrich; 30 mg/ml stock in DMSO] was dissolved in near-boiling SPII medium to avoid precipitation. The medium was then allowed to slowly cool to 30C or room temperature. At the time of drug treatment, cells were filtered and immediately re-suspended in the medium containing benomyl or DMSO.
Novel response to microtubule perturbation in meiosis.
No sample metadata fields
View SamplesFNDC4 is a novel secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in various mouse models of inflammation as well as in human inflammatory conditions. Specifically, subjects with inflammatory bowel disease show increased FNDC4 levels locally at inflamed sites of the intestine. Interestingly, administration of recombinant FNDC4 during colitis development in mice resulted in markedly reduced disease severity compared to mice injected with a control protein. Conversely, mice that lacked Fndc4 showed increased colitis severity. Analysis of binding of FNDC4 to different immune cell types revealed strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro resulted in reduced phagocytosis, improved survival and reduced pro-inflammatory chemokine expression. Hence, treatment with FNDC4 resulted in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized a novel factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.
FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.
Sex, Specimen part, Treatment
View SamplesCD8+ T-cells inhibit virus replication in SIV-infected rhesus macaques (RM). However, it is unclear to what extent the viral suppression mediated by CD8+ T-cells reflects direct killing of infected cells as opposed to indirect, non-cytolytic mechanisms. In this study, we used functional genomics to investigate potential mechanisms of in vivo viral suppression mediated by CD8+ lymphocytes. Eight chronically SIVmac239-infected RMs underwent CD8+ lymphocyte depletion, and RNA from whole blood was obtained prior to depletion, at the nadir of CD8+ lymphocytes (5 days post-depletion), and during the repopulation phase (11 days post-depletion). Principal components analysis demonstrated that overall gene expression during the nadir of CD8+ T-cells was highly divergent from other intervals. Conversely, the genomic signature of samples from the CD8+ cell rebound phase was similar to that of pre-depletion samples. During CD8+ lymphocyte depletion we detected a strongly significant decrease in the expression of the genes encoding CD8 and CD8 chains, consistent with the near complete CD8+ T-cell depletion measured by flow cytometry. Of note, we observed significant down-regulation of the expression of genes encoding for factors that can suppress SIV replication, including the CCR5-binding chemokine CCL5/Rantes, several retroviral restriction factors (TRIM10, TRIM15, APOBEC3G/H) and defensins. Reduced expression of various genes related to T cell activation and proliferation was also observed. Collectively, these data indicate that depletion of CD8+ lymphocytes in SIV-infected RMs is associated with the establishment of a pattern of gene expression that may result in increased intrinsic permissivity to virus replication.
Transcriptional profiling of experimental CD8(+) lymphocyte depletion in rhesus macaques infected with simian immunodeficiency virus SIVmac239.
No sample metadata fields
View SamplesThe p53 tumor suppressor is a DNA damage responsive sequence-specific transcriptional activator. The sustained activation of the p53 response is incompatible with cell growth and viability. To circumvent this issue, a variety of negative feedback loops exist to limit the duration of p53 activation. Despite our understanding of p53-regulation, very little is known about the effect of transient p53 activation on the long term expression of p53 target genes. Here we used a temperature sensitive variant of p53 and oligonucleotide microarrays to monitor gene expression during and following reversible p53 activation. The expression of most p53-induced transcripts was rapidly reversible, consistent with active mRNA decay. Representative 3UTRs derived from short-lived transcripts (i.e. DDB2 and GDF15) conferred instability on a heterologous mRNA while 3UTRs derived from more stable transcripts (i.e. CRYAB and TP53I3) did not. The 3UTRs derived from unstable p53-induced mRNAs were significantly longer than those derived from stable mRNAs. These 3UTRs had high uridine and low cytosine content, leading to a higher density of U-, AU- and GU-rich sequences. Remarkably, short-lived p53 targets were induced faster reaching maximum transcript levels earlier than the stable p53-targets. Taken together, the p53 transcriptional response has evolved with primarily short-lived target mRNAs and that post-transcription processes play a prominent role in the p53 response.
The role of mRNA decay in p53-induced gene expression.
Specimen part, Cell line
View SamplesSingle cell transcriptomics has emerged as a powerful approach to dissecting phenotypic heterogeneity in complex, unsynchronized cellular populations. However, many important biological questions demand quantitative analysis of large numbers of individual cells. Hence, new tools are urgently needed for efficient, inexpensive, and parallel manipulation of RNA from individual cells. We report a simple microfluidic platform for trapping single cell lysates in sealed, picoliter microwells capable of “printing” RNA on glass or capturing RNA on polymer beads. To demonstrate the utility of our system for single cell transcriptomics, we developed a highly scalable technology for genome-wide, single cell RNA-Seq. The current implementation of our device is pipette-operated, profiles hundreds of individual cells in parallel with library preparation costs of ~$0.10-$0.20/cell, and includes five lanes for simultaneous experiments. We anticipate that this system will ultimately serve as a general platform for large-scale single cell transcriptomics, compatible with both imaging and sequencing readouts.!Series_type = Expression profiling by high throughput sequencing Overall design: A microfluidic device that pairs sequence-barcoded mRNA capture beads with individual cells was used to barcode cDNA from individual cells which was then pre-amplified by in vitro transcription in a pool and converted into an Illumina RNA-Seq library. Libraries were generated from ~600 individual cells in parallel and extensive analysis was done on 396 cells from the U87 and MCF10a cell lines and from ~500 individual cells with extensive analysis on 247 cells from the U87 and WI-38 cell lines. Sequencing was done on the 3''-end of the transcript molecules. The first read contains cell-identifying barcodes that were present on the capture bead and the second read contains a unique molecular identifier (UMI) barcode, a lane-identifying barcode, and then the sequence of the transcript.
Scalable microfluidics for single-cell RNA printing and sequencing.
No sample metadata fields
View SamplesExpression profiling of mRNA abundance in the adult mouse olfactory epithelium during replacement of OSNs forced by the bilateral ablation of the olfactory bulbs. The experiment was done on 6 week old male C57Bl/6 mice. Olfactory epithelium tissue samples were collected on days 1, 5, and 7 after bulbectomy. The cellular processes activated by bulbectomy include apoptosis of mature olfactory sensory neurons, infiltration of macrophages and dendritic cells, stimulation of proliferation of basal cell progenitors, and differentation of new sensory neurons.
Transcriptional changes during neuronal death and replacement in the olfactory epithelium.
No sample metadata fields
View SamplesMalignant melanoma is a common and frequently lethal disease. Current therapeutic interventions have little effect on survival, emphasizing the need for a better understanding of the genetic, epigenetic, and phenotypic changes in melanoma formation and progression. We identified genes that were not previously known to be silenced by methylation in melanoma using a microarray-based screen following treatment of melanoma cell lines with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine.
Epigenetic silencing of novel tumor suppressors in malignant melanoma.
No sample metadata fields
View SamplesBackground: The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called intestinal barrier proteins. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPAR), which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPAR on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPAR-null mice. Treatment with the synthetic PPAR agonist WY14643 served as reference.
PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression.
No sample metadata fields
View SamplesThe effects of constitutively active Hypoxia Inducible Factor (HIF) and inactivated von Hippel-Lindau tumor suppressor gene product (pVHL) were examined in a mouse model. Conditionally expressed, constitutively active HIF-1a and HIF-2a were compared with inactivated pVHL.
Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo.
Specimen part
View SamplesHyperimmune activation is one of the strong predictors of disease progression during pathogenic immunodeficiency virus infections and is mediated in part by sustained type I interferon (IFN) signaling. Combination antiretroviral therapy suppresses hyperimmune activation only partially in HIV-infected individuals. Here, we show that blockade of Programmed Death-1 (PD-1) during chonic SIV infection significantly reduces the expression of transcripts associated with type I IFN signaling in the blood and colorectal tissue of rhesus macaques (RM). The effect of PD-1 blockade on type I IFN signaling was durable and persisted under high viremia, a condition that is seen in nonprogressive SIV infection in their natural hosts. The reduced type I IFN signaling was associated with enhanced expression of some of the junction-associated genes in the colorectal tissue and a profound decrease in LPS levels in plasma suggesting a possible repair of gut associated junctions and decreased microbial translocation. The reduced type I IFN signaling was also associated with enhanced immunity against gut resident pathogenic bacteria, control of gut associated opportunistic infections and survival of SIV-infected RMs. These results reveal novel mechanisms by which PD-1 blockade enhances survival of SIV-infected RMs and have implications for development of novel therapeutic approaches to control HIV/AIDS.
PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques.
Specimen part, Disease, Disease stage, Treatment
View Samples