We generated the transcriptional regulatory footprint of phthalimide neovascular factor 1 (PNF1)a novel synthetic small molecule that exhibits significant in vitro endothelial potency and significant in vivo microvascular network expansionby performing comparative microarray analysis on PNF1-stimulated (versus control) human microvascular endothelial cells (HMVEC) spanning 1-48 h post-supplementation. We subsequently applied network analysis tools (including substantial libraries of information regarding known associations among network components) to elucidate key signaling components and pathways involved in the PNF1 mechanism-of-action. We identified that PNF1 first induces function of the tumor necrosis factor-alpha (TNF-) signaling pathway, which in turn affects transforming growth factor-beta (TGF-) signaling.
Mechanistic exploration of phthalimide neovascular factor 1 using network analysis tools.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells.
Treatment
View SamplesMyb-MuvB (MMB)/dREAM is a nine subunit complex first described in Drosophila as a repressor of transcription, dependent upon E2F2 and the RBFs. Myb, an integral member of MMB, curiously plays no role in the silencing of the test genes previously analyzed. Moreover, Myb plays an activating role in DNA replication in Drosophila egg chamber follicle cells. The essential functions for Myb are executed as part of MMB. This duality of function lead to the hypothesis that MMB, which contains both known activator and repressor proteins, might function as part of a switching mechanism that is dependent upon DNA sites and developmental context.
Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells.
Treatment
View SamplesMolecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644
Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesNephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these models. In this study we used an unbiased transcriptional network approach to define similarities and differences between three lupus models and human LN. Affymetrix-based expression profiles were analyzed using Genomatix Bibliosphere software and transcriptional networks were compared using the Tool for Approximate LargE graph matching (TALE). The 20 network hubs (nodes) shared between all three models and human LN reflect key pathologic processes, namely immune cell infiltration/activation, macrophage/dendritic cell activation, endothelial cell activation/injury and tissue remodeling/fibrosis. Each model also shares unique features with human LN. Pathway analysis of the TALE nodes highlighted macrophage/DC activation as a cross-species shared feature. To distinguish which genes and activation pathways might derive from mononuclear phagocytes in the human kidneys the gene expression profile of isolated NZB/W renal mononuclear cells was compared with human LN kidney profiles. Network analysis of the shared signature highlighted NFkappaB1 and PPARgamma as major hubs in the tubulointerstitial and glomerular networks respectively. Key nodes in the renal macrophage inflammatory response form the basis for further mechanistic and therapeutic studies.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesExpression data from human with hypertensive nephropathy (HT)
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesHistidine-rich glycoprotein (HRG) is a 75 kDa heparin-binding plasma protein which has been implicated in regulation of tumor angiogenesis and growth. To exert some of its biological functions, HRG acts on macrophages.This study was performed to assess changes in gene expression in peritoneal macrophages treated with HRG using oligonucleotide microarrays
Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization.
Specimen part, Disease, Treatment, Time
View SamplesGene expression profiles of 75 tissue samples were analyzed representing the stepwise carcinogenic process from pre-neoplastic lesions (cirrhosis and dysplasia) to HCC, including four neoplastic stages (very early HCC to metastatic tumors) from patients with HCV infection. Gene signatures that accurately reflect the pathological progression of disease at each stage were identified and potential molecular markers for early diagnosis uncovered. Pathway analysis revealed dysregulation of the Notch and Toll-like receptor pathways in cirrhosis, followed by deregulation of several components of the Jak/STAT pathway in early carcinogenesis, then up-regulation of genes involved in DNA replication and repair and cell cycle in late cancerous stages.
Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma.
No sample metadata fields
View Samples