refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 77 results
Sort by

Filters

Technology

Platform

accession-icon GSE80067
Effects of model chylomicron remants on gene expresssion in human aortic endothelial cells (HAEC)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Global gene experssion study of the HAEC transcriptional response to artificial chlyomicron remnant-like particles (A-CRLPs) prepared with triglycerides extracted from four natural dietary oils: fish, DHASCO, corn and palm oils. We hypothesised that A-CRLPs could differentially regulate HAEC gene expression according to thier triglyceride content. These data provide an important starting point for investigations into the effects of A-CRLPs on endothelial cells, particulary genes involved in redox balance and inflammatory processes.

Publication Title

Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11200
Expression data from malting barley seeds
  • organism-icon Hordeum vulgare
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Malting is seed germination under strictly controlled environmental conditions. Malting quality is a complex phenotype that combines a large number of interrelated components, each of which shows complex inheritance. Currently, only a few genes involved in determining malting quality have been characterized. This study combined transcript profiling with phenotypic correlations to identify candidate genes for malting quality.

Publication Title

Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE110986
GATA2 in mesenchymal stem cells controls bone trabecularization and hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE110985
Expression data from primary sqWAT-MSC cells from mouse
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

GATA2 is a transcription factor that is required for hematopoietic stem cell (HSC) differentiation. GATA2 is also expressed in mesenchymal cells and blocks differentiation of both white and brown adipocytes by interfering with C/EBP activity and PPAR expression. By studying genome-wide binding sites of endogenous GATA2 in mesenchymal stem cells (MSC), we discovered a previously unrecognized function of GATA2 in the regulation of skeletal development-related genes. In contrast to hematopoietic stem cells, canonical GATA2 binding motifs in MSCs co-localized with motifs for transcription factors of the FOX and HOX family, known regulators of skeletal development. Consistently, ectopic GATA2 expression in MSCs regulated many osteoblast-related genes. Ectopic GATA2 blocked, whereas GATA2 deletion enhanced differentiation of osteoblastic precursors. GATA2 expression inhibited bone morphogenetic protein (BMP)-2 induced SMAD1/5/8 activity, a pathway that drives osteoblastogenesis. MSC-specific deletion of GATA2 in mice affected both numbers and osteogenic potential of bone-residing precursors without disturbing normal skeletal development. In adult mice, MSC-specific GATA2 deficiency affected trabecular bone structure and its mechanical properties. blood phenotype? In summary, our study identified GATA2 as a novel regulator of osteoblast differentiation and bone morphology, suggesting a role of GATA2 in MSC lineage determination that goes beyond adipocyte differentiation.

Publication Title

Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94601
Molecular profiling of 159 primary lung carcinomas
  • organism-icon Homo sapiens
  • sample-icon 159 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Molecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644

Publication Title

Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE32592
Human and mouse lupus nephritis cross-species transcriptional analysis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), (ffymetrixgenechipmousegenome4302.0array[cdf:mmentrezg10)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE37463
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32591
Expression data from human with lupus nephritis (LN)
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), (ffymetrixgenechipmousegenome4302.0array[cdf:mmentrezg10)

Description

Nephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these models. In this study we used an unbiased transcriptional network approach to define similarities and differences between three lupus models and human LN. Affymetrix-based expression profiles were analyzed using Genomatix Bibliosphere software and transcriptional networks were compared using the Tool for Approximate LargE graph matching (TALE). The 20 network hubs (nodes) shared between all three models and human LN reflect key pathologic processes, namely immune cell infiltration/activation, macrophage/dendritic cell activation, endothelial cell activation/injury and tissue remodeling/fibrosis. Each model also shares unique features with human LN. Pathway analysis of the TALE nodes highlighted macrophage/DC activation as a cross-species shared feature. To distinguish which genes and activation pathways might derive from mononuclear phagocytes in the human kidneys the gene expression profile of isolated NZB/W renal mononuclear cells was compared with human LN kidney profiles. Network analysis of the shared signature highlighted NFkappaB1 and PPARgamma as major hubs in the tubulointerstitial and glomerular networks respectively. Key nodes in the renal macrophage inflammatory response form the basis for further mechanistic and therapeutic studies.

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE37455
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis[Tubulointerstitial]
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression data from human with hypertensive nephropathy (HT)

Publication Title

Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34164
Expression data from isolated peritoneal macrophages treated with Histidine-rich glycoprotein
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Histidine-rich glycoprotein (HRG) is a 75 kDa heparin-binding plasma protein which has been implicated in regulation of tumor angiogenesis and growth. To exert some of its biological functions, HRG acts on macrophages.This study was performed to assess changes in gene expression in peritoneal macrophages treated with HRG using oligonucleotide microarrays

Publication Title

Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization.

Sample Metadata Fields

Specimen part, Disease, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact