Global gene experssion study of the HAEC transcriptional response to artificial chlyomicron remnant-like particles (A-CRLPs) prepared with triglycerides extracted from four natural dietary oils: fish, DHASCO, corn and palm oils. We hypothesised that A-CRLPs could differentially regulate HAEC gene expression according to thier triglyceride content. These data provide an important starting point for investigations into the effects of A-CRLPs on endothelial cells, particulary genes involved in redox balance and inflammatory processes.
Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway.
Specimen part
View SamplesMalting is seed germination under strictly controlled environmental conditions. Malting quality is a complex phenotype that combines a large number of interrelated components, each of which shows complex inheritance. Currently, only a few genes involved in determining malting quality have been characterized. This study combined transcript profiling with phenotypic correlations to identify candidate genes for malting quality.
Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.).
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone.
Cell line
View SamplesGATA2 is a transcription factor that is required for hematopoietic stem cell (HSC) differentiation. GATA2 is also expressed in mesenchymal cells and blocks differentiation of both white and brown adipocytes by interfering with C/EBP activity and PPAR expression. By studying genome-wide binding sites of endogenous GATA2 in mesenchymal stem cells (MSC), we discovered a previously unrecognized function of GATA2 in the regulation of skeletal development-related genes. In contrast to hematopoietic stem cells, canonical GATA2 binding motifs in MSCs co-localized with motifs for transcription factors of the FOX and HOX family, known regulators of skeletal development. Consistently, ectopic GATA2 expression in MSCs regulated many osteoblast-related genes. Ectopic GATA2 blocked, whereas GATA2 deletion enhanced differentiation of osteoblastic precursors. GATA2 expression inhibited bone morphogenetic protein (BMP)-2 induced SMAD1/5/8 activity, a pathway that drives osteoblastogenesis. MSC-specific deletion of GATA2 in mice affected both numbers and osteogenic potential of bone-residing precursors without disturbing normal skeletal development. In adult mice, MSC-specific GATA2 deficiency affected trabecular bone structure and its mechanical properties. blood phenotype? In summary, our study identified GATA2 as a novel regulator of osteoblast differentiation and bone morphology, suggesting a role of GATA2 in MSC lineage determination that goes beyond adipocyte differentiation.
Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.
No sample metadata fields
View SamplesMolecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644
Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesNephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these models. In this study we used an unbiased transcriptional network approach to define similarities and differences between three lupus models and human LN. Affymetrix-based expression profiles were analyzed using Genomatix Bibliosphere software and transcriptional networks were compared using the Tool for Approximate LargE graph matching (TALE). The 20 network hubs (nodes) shared between all three models and human LN reflect key pathologic processes, namely immune cell infiltration/activation, macrophage/dendritic cell activation, endothelial cell activation/injury and tissue remodeling/fibrosis. Each model also shares unique features with human LN. Pathway analysis of the TALE nodes highlighted macrophage/DC activation as a cross-species shared feature. To distinguish which genes and activation pathways might derive from mononuclear phagocytes in the human kidneys the gene expression profile of isolated NZB/W renal mononuclear cells was compared with human LN kidney profiles. Network analysis of the shared signature highlighted NFkappaB1 and PPARgamma as major hubs in the tubulointerstitial and glomerular networks respectively. Key nodes in the renal macrophage inflammatory response form the basis for further mechanistic and therapeutic studies.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesExpression data from human with hypertensive nephropathy (HT)
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesHistidine-rich glycoprotein (HRG) is a 75 kDa heparin-binding plasma protein which has been implicated in regulation of tumor angiogenesis and growth. To exert some of its biological functions, HRG acts on macrophages.This study was performed to assess changes in gene expression in peritoneal macrophages treated with HRG using oligonucleotide microarrays
Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization.
Specimen part, Disease, Treatment, Time
View Samples