The size and scope of microarray experiments continue to increase. However, datasets generated on different platforms or at different centres contain biases. Improved techniques are needed to remove platform- and batch-specific biases. One experimental control is the replicate hybridization of a subset of samples at each site or on each platform to learn the relationship between the two platforms. To date, no algorithm exists to specifically use this type of control. LTR is a linear-modelling-based algorithm that learns the relationship between different microarray batches from replicate hybridizations. LTR was tested on a new benchmark dataset of 20 samples hybridized to different Affymetrix microarray platforms. Before LTR, the two platforms were significantly different; application of LTR removed this bias. LTR was tested with six separate data pre-processing algorithms, and its effectiveness was independent of the pre-processing algorithm. Sample-size experiments indicate that just three replicate hybridizations can significantly reduce bias. An R library implementing LTR is available.
LTR: Linear Cross-Platform Integration of Microarray Data.
Sex
View SamplesDeep Sequencing of mRNA from the Drosophila melanogaster cell line D.Mel-2 Overall design: Analysis of poly(A)+ RNA of D.Mel-2 cell line
Design and evaluation of genome-wide libraries for RNA interference screens.
Cell line, Subject
View SamplesBackground
mRNA levels in control rat liver display strain-specific, hereditary, and AHR-dependent components.
No sample metadata fields
View SamplesIdiosyncratic drug reactions (IDRs) cause significant morbidity and mortality. In an animal model of IDRs, 50-80% of Brown Norway rats exposed to D-penicillamine develop an autoimmune syndrome after several weeks of treatment. The symptoms of the IDR are similar to that observed in humans who take D-penicillamine. The mechanism of this reaction is unknown, and no effective biomarkers have been identified to predict susceptibility. We postulate that cell stress caused by drugs is required to initiate the response. We used a highthroughput approach to identify factors that might represent danger signals by profiling hepatic gene expression 6 h after dosing with D-penicillamine (150 mg/kg). Our results show that the drug-treated animals cluster into two distinct groups. One group exhibits substantial expression changes relative to control animals. The most significantly altered transcripts have a role in stress, energy metabolism, acute phase response, and inflammation. We used quantitative reverse transcriptase polymerase chain reaction to measure transcript levels in liver biopsies of 33 rats and found that resistant animals cluster together. This 'resistant' cluster of animals contains 87.5% (7/8) resistant animals but only 48% (12/25) 'sensitive' animals. This separation is statistically significant at the p 0.01 level.
Gene expression profiling in a model of D-penicillamine-induced autoimmunity in the Brown Norway rat: predictive value of early signs of danger.
Sex, Specimen part, Treatment
View SamplesThe intestine is an organ with exceptionally high rate of cell turnover and perturbations in this process can lead to disease such as cancer or intestinal atrophy. Nutrition is a key factor regulating the intestinal cell turnover and has a profound impact on intestinal volume and cellular architecture. However, how the intestinal equilibrium is maintained in fluctuating dietary conditions is insufficiently understood. By utilizing the Drosophila midgut as a model, we reveal a novel nutrient sensing mechanism coupling stem cell metabolism with stem cell extrinsic growth signal. Our results show that intestinal stem cells (ISCs) employ the hexosamine biosynthesis pathway (HBP) to monitor nutritional status and energy metabolism. Elevated activity of the HBP promotes Warburg effect-like metabolic reprogramming, which is required for the reactivation of ISCs from calorie restriction-induced quiescence. Furthermore, the HBP activity is an essential facilitator for insulin signaling-induced intestinal growth. In conclusion, intestinal stem cell intrinsic nutrient sensing regulates metabolic pathway activities, and defines the stem cell responsiveness to niche-derived growth signals. Overall design: Intestinal mRNA profiles of 7 days old mated females of UAS-mCD8::GFP, hsFLP; tub-GAL4/+; FRT82B tub-GAL80/FRT82B genotype kept in calorie-restriction +/- 0.1M D-acetylglucosamine for 24h.
Stem Cell Intrinsic Hexosamine Metabolism Regulates Intestinal Adaptation to Nutrient Content.
Sex, Specimen part, Treatment, Subject
View SamplesTienilic acid (TA) was withdrawn from the US market due to numerous cases of liver necrosis. Two major hypotheses currently used to understand the mechanisms of idiosyncratic reactions such as TA-induced hepatotoxicity are the hapten and danger hypotheses. Both human cytochrome (CYP) P450 2C9 and the rat ortholog CYP 2C11 metabolize TA, and it was reported that a reactive metabolite of TA binds almost exclusively to these enzymes, thus acting as a mechanism-based inhibitor. TA-induced liver toxicity is associated with antibodies against CYP 2C9, thus TA appears to act as a hapten. However, if the binding were limited to CYP 2C, it is unlikely that this would lead to significant cell stress. Thus, if TA does not cause cell stress it would suggest that a drug does not have to generate a danger signal in order to cause an idiosyncratic drug reaction and acting as a hapten is sufficient. In order to test whether TA can cause cell stress, male Sprague Dawley rats were orally dosed with TA, and hepatic gene expression was profiled at 6 and 24 h after drug administration.
Changes in gene expression induced by tienilic Acid and sulfamethoxazole: testing the danger hypothesis.
No sample metadata fields
View Samples2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500g/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear.
Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD.
Sex, Specimen part
View SamplesMajor toxicities of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) result from dysregulation of gene expression mediated by the aryl hydrocarbon receptor (AHR). Dioxin-like chemicals alter expression of numerous genes in liver but the specific genes whose dysregulation leads to toxicities such as wasting, hepatotoxicity and lethality have not been identified. We searched for genes that are most likely to be key to dioxin toxicity by using gene expression arrays to contrast hepatic gene expression after TCDD treatment in dioxin-sensitive rats (that carry wildtype AHR) with gene expression in H/W(Kuopio) rats which are highly resistant to dioxin toxicity due to a major deletion in the AHR's transactivation domain (TAD). The total number of TCDD-responsive genes was smaller in rats with the AHRH/W genotype than in rats with wildtype AHR. However, genes in the classic AH gene battery such as CYP1A1, CYP1A2 and CYP1B1 remained fully responsive to TCDD in AHRH/W rats; thus the TAD deletion selectively interferes with expression of a subset of hepatic genes rather than abolishing global AHR-mediated responses. Genes in the following functional categories differ in response to TCDD between dioxin-sensitive rats and dioxin-resistant rats: fatty acid oxidation, metabolism (xenobiotic, alcohol, amino acid, and fatty acid), phosphate transport, regulation of steroid biosynthesis, nitrogen compound catabolism, and generation of precursor metabolites and energy. Many of these differentially-responsive genes are integral parts of pathways such as: protein degradation and synthesis, fatty acid metabolism and synthesis, cytokinesis, cell growth, and apoptosis which may be part of mechanisms which lead to TCDD-induced wasting, hepatotoxicity, tumors, and death. These differentially-responsive genes are worthy candidates for further mechanistic studies to test their role in mediating or protecting from major dioxin toxicities.
Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities.
No sample metadata fields
View SamplesBackground
Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse.
No sample metadata fields
View SamplesBackground
Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse.
No sample metadata fields
View Samples