refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 462 results
Sort by

Filters

Technology

Platform

accession-icon GSE15935
Expression data from 'nave' and HVC-replicon containing Huh7 cells (Clone A cells)
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cyclophilin binding drugs, NIM811 and cyclosporin A (CsA), inhibit the replication of HCV replicon.

Publication Title

Multiple cyclophilins involved in different cellular pathways mediate HCV replication.

Sample Metadata Fields

Time

View Samples
accession-icon GSE61767
Effect of YAP overexpression on HuCCT1 cholangiocarcinoma cell line transcriptome
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE69655
Effect of YAP overexpression on HuCCT1 cholangiocarcinoma cell line transcriptome (YAPS94A)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The YAP pathway in regulating organ size by integrating external signals to control the expression of genes involved in cell proliferation. YAP is known to be involved in tumorigenesis in several tissues, yet its role in cholangiocarcinoma is not established

Publication Title

YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE61764
Effect of YAP overexpression on HuCCT1 cholangiocarcinoma cell line transcriptome (YAP overexpression)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The YAP pathway in regulating organ size by integrating external signals to control the expression of genes involved in cell proliferation. YAP is known to be involved in tumorigenesis in several tissues, yet its role in cholangiocarcinoma is not established

Publication Title

YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61765
Effect of YAP overexpression on HuCCT1 cholangiocarcinoma cell line transcriptome (shRNA targeting YAP)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The YAP pathway in regulating organ size by integrating external signals to control the expression of genes involved in cell proliferation. YAP is known to be involved in tumorigenesis in several tissues, yet its role in cholangiocarcinoma is not established

Publication Title

YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE11289
Activation of peroxisome proliferator-activated receptor alpha in human peripheral blood mononuclear cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Peripheral blood mononuclear cells (PBMCs) are relatively easily obtainable cells in humans. Gene expression profiles of PBMCs have been shown to reflect the pathological and physiological state of a person. Recently, we showed that the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR) has a functional role in human PBMCs during fasting. However, the extent of the role of PPAR in human PBMCs remains unclear. In this study, we therefore performed gene expression profiling of PBMCs incubated with the specific PPAR ligand WY14,643. Results: Incubation of PBMCs with WY14,643 for 12 hours resulted in a differential expression of 1,373 of the 13,080 genes expressed in the PBMCs. Gene expression profiles showed a clear individual response to PPAR activation between six healthy human blood donors, which was not the result of the nutritional status of the donors. Pathway analysis showed that genes in fatty acid metabolism, primarily in -oxidation were up-regulated upon activation of PPAR with WY14,643, and genes in several amino acid metabolism pathways were down-regulated. Conclusions: This study shows that PPAR in human PBMCs regulates fatty acid and amino acid metabolism. In addition, PBMC gene expression profiles show individual responses to WY14,643 activation. We show that PBMCs are a suitable model to study changes in PPAR activation in healthy humans.

Publication Title

Activation of peroxisome proliferator-activated receptor alpha in human peripheral blood mononuclear cells reveals an individual gene expression profile response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31901
Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin resistant men. Design: In a single-blinded randomized crossover study, 10 insulin resistant men consumed three high-fat mixed-meals (2.6MJ). Meals were high in saturated FA (SFA), in monounsaturated FA (MUFA) or in polyunsaturated FA (PUFA). Fasting and postprandial skeletal muscle FA handling were examined by measuring arterio-venous concentration differences across forearm muscle. [2H2]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and FFA in the circulation and [U-13C]-palmitate was added to the meal to label chylomicron-TAG. Skeletal muscle biopsies were taken to assess intramuscular lipid metabolism and gene expression. Results: Insulin and glucose responses (AUC) after SFA meal were significantly higher compared with PUFA meal (p=0.003 and 0.028, respectively). Uptake of TAG-derived FA was significantly lower in the early postprandial phase after PUFA meal as compared with other meals (AUC60-120, p<0.001). The PUFA meal induced less transcriptional downregulation of oxidative pathways compared with other meals. The fractional synthetic rate was higher in DAG and PL fraction after MUFA and PUFA meal. Conclusion: Intake of a PUFA meal reduced TAG-derived skeletal muscle FA uptake, which was accompanied by higher postprandial insulin sensitivity and a tendency towards a higher muscle lipid turnover. These data suggest that the effects of replacement of SFA by PUFA may contribute to less muscle lipid uptake and may be therefore protective against the development of insulin resistance.

Publication Title

PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity.

Sample Metadata Fields

Sex, Age, Time

View Samples
accession-icon GSE7487
Gene profiling of pathological cardiac hypertrophy vs physiological hypertrophy
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exercise training or pathological stimuli eg pressure or volume overload. Majority of new therapies for heart failure has mixed outcomes. A combined mouse model and oligo-array approach are used to examine whether phosphoinositide 3-kinase (p110-alpha isoform) activity is critical for maintenance of cardiac function and long-term survival in a setting of heart failure. The significance and expected outcome are to recognise genes involved in models of heart failure ie pathological- vs physiology-hypertrophy, and examine the molecular mechanisms responsible for such activity.

Publication Title

PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056216
Transcription of mammalian cis-regulatory elements is restrained by actively enforced early termination [RNA]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. Overall design: polyA-mRNAs or 4sU-labeled RNAs from BMDMs, either untreated or treated for with lipopolysaccharide (LPS) for the indicated time. Experiments were carried out in cells containing either a short hairpin targeting either of these: 1) Wdr82; 2) Set1a+Set1b; 3) Pnuts; or the empty vector (LMP) or a scrambled as a control. When specified, cells were pre-treated with 5,6-Dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) in order to prevent RNA polymerase II elongation.

Publication Title

Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73599
Celiac disease T cell clone response to CD3/CD28 stimulation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify the CD4+ T cell cytokines responsible for the proliferation of the Lin-IEL lines CD4+ T cell clone L10, which recognises DQ2-glia-1, one of the immunodominant T cell epitopes in celiac disease, was stimulated for 3 hours in IMDM with plate-bound CD3/CD28-specific (2.5 g/ml each) or control antibodies coated onto 6-well non-tissue culture treated plates. Three independent biological replicates were performed, each time including 6 million Ficoll-purified live cells per condition. RNA was purified from these cells using the RNAeasy mini kit (Qiagen, Venlo, the Netherlands). cDNA was amplified using the Applause WT-Amp system (NuGEN technologies, Bemmel, the Netherlands) and biotin-labelled with the Encore Biotin Module (NuGEN). Human Gene 1.0 ST arrays (Affymetrix, High Wycombe, UK) were employed to quantify global gene expression.

Publication Title

CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact