This SuperSeries is composed of the SubSeries listed below.
Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis.
Specimen part, Disease, Disease stage
View SamplesPhiladelphia-like B-cell precursor acute lymphoblastic leukemia (Ph-like ALL) is characterized by distinct genetic alterations and inferior prognosis in children and younger adults. The purpose of this study was the genetic and clinical characterization of Ph-like ALL in adults. Among 207 adult B-cell precursor ALL patients, 26 (13%) were classified as Ph-like using Affymetrix microarrays. The incidence of this subtype was 25% among 105 B-cell precursor ALL patients negative for BCR-ABL1 and MLL-translocations (B-other). All patients with IgH-CRLF2 translocation (38% vs 0%; p=0.002) or mutations in JAK2 (44% vs. 0%; p<0.001) were exclusively found in the Ph-like subgroup. Clinical and outcome analyses were restricted to patients treated within GMALL trials 06/99 and 07/03 (n=107). The complete remission (CR) rate after induction was 100% for Ph-like (n=19) and B-other patients (n=40). After induction, significantly fewer Ph-like patients reached molecular CR (33% vs 79%; p=0.01). At 5 years, the Ph-like ALL subgroup had a lower probability of continuous CR (24% vs 62%; p<0.001) and overall survival (22% vs 64%; p=0.006) compared to B-other ALL patients. Subsequent analysis led to a clinically applicable algorithm identifying this patient subset with a specificity of 100%. Our study is the first to demonstrate that the profile of genetic events in adult Ph-like ALL resembles pediatric Ph-like ALL and differs from B-other ALL. The Ph-like phenotype associates with inferior outcomes in intensively treated adult ALL patients. Ph-like adult ALL should be recognized as a distinct, high-risk entity and further research on improved diagnostic and therapeutic approaches is needed.
Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis.
Specimen part, Disease, Disease stage
View SamplesPhiladelphia-like B-cell precursor acute lymphoblastic leukemia (Ph-like ALL) is characterized by distinct genetic alterations and inferior prognosis in children and younger adults. The purpose of this study was the genetic and clinical characterization of Ph-like ALL in adults. Among 207 adult B-cell precursor ALL patients, 26 (13%) were classified as Ph-like using Affymetrix microarrays. The incidence of this subtype was 25% among 105 B-cell precursor ALL patients negative for BCR-ABL1 and MLL-translocations (B-other). All patients with IgH-CRLF2 translocation (38% vs 0%; p=0.002) or mutations in JAK2 (44% vs. 0%; p<0.001) were exclusively found in the Ph-like subgroup. Clinical and outcome analyses were restricted to patients treated within GMALL trials 06/99 and 07/03 (n=107). The complete remission (CR) rate after induction was 100% for Ph-like (n=19) and B-other patients (n=40). After induction, significantly fewer Ph-like patients reached molecular CR (33% vs 79%; p=0.01). At 5 years, the Ph-like ALL subgroup had a lower probability of continuous CR (24% vs 62%; p<0.001) and overall survival (22% vs 64%; p=0.006) compared to B-other ALL patients. Subsequent analysis led to a clinically applicable algorithm identifying this patient subset with a specificity of 100%. Our study is the first to demonstrate that the profile of genetic events in adult Ph-like ALL resembles pediatric Ph-like ALL and differs from B-other ALL. The Ph-like phenotype associates with inferior outcomes in intensively treated adult ALL patients. Ph-like adult ALL should be recognized as a distinct, high-risk entity and further research on improved diagnostic and therapeutic approaches is needed.
Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis.
Specimen part, Disease, Disease stage
View SamplesPhiladelphia-like B-cell precursor acute lymphoblastic leukemia (Ph-like ALL) is characterized by distinct genetic alterations and inferior prognosis in children and younger adults. The purpose of this study was the genetic and clinical characterization of Ph-like ALL in adults. Among 207 adult B-cell precursor ALL patients, 26 (13%) were classified as Ph-like using Affymetrix microarrays. The incidence of this subtype was 25% among 105 B-cell precursor ALL patients negative for BCR-ABL1 and MLL-translocations (B-other). All patients with IgH-CRLF2 translocation (38% vs 0%; p=0.002) or mutations in JAK2 (44% vs. 0%; p<0.001) were exclusively found in the Ph-like subgroup. Clinical and outcome analyses were restricted to patients treated within GMALL trials 06/99 and 07/03 (n=107). The complete remission (CR) rate after induction was 100% for Ph-like (n=19) and B-other patients (n=40). After induction, significantly fewer Ph-like patients reached molecular CR (33% vs 79%; p=0.01). At 5 years, the Ph-like ALL subgroup had a lower probability of continuous CR (24% vs 62%; p<0.001) and overall survival (22% vs 64%; p=0.006) compared to B-other ALL patients. Subsequent analysis led to a clinically applicable algorithm identifying this patient subset with a specificity of 100%. Our study is the first to demonstrate that the profile of genetic events in adult Ph-like ALL resembles pediatric Ph-like ALL and differs from B-other ALL. The Ph-like phenotype associates with inferior outcomes in intensively treated adult ALL patients. Ph-like adult ALL should be recognized as a distinct, high-risk entity and further research on improved diagnostic and therapeutic approaches is needed.
Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis.
Specimen part, Disease, Disease stage
View SamplesThe goal of the experiment was to assay the role of the glucocorticoid receptor (GR) in development of mesenchynmal cells of the lung occuring between the 16 and 18 day of embryonal development.
Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells.
Specimen part
View SamplesCHEK2 1100delC is a moderate-risk cancer susceptibility allele that confers a high breast cancer risk in a polygenic setting. Gene expression profiling of CHEK2 1100delC breast cancers may reveal clues to the nature of the polygenic CHEK2 model and its genes involved. Here, we report global gene expression profiles of a cohort of 155 familial breast cancers, including 26 CHEK2 1100delC mutant tumors. A 40-gene CHEK2 signature was defined that significantly associated with CHEK2 1100delC breast cancers. The identification of a CHEK2 gene signature implies an unexpected biological homogeneity among the CHEK2 1100delC breast cancers. In addition, all 26 CHEK2 1100delC tumors classified as luminal intrinsic subtype breast cancers, with 8 luminal A and 18 luminal B tumors. This biological make-up of CHEK2 1100delC breast cancers suggests that a relatively limited number of additional susceptibility alleles are involved in the polygenic CHEK2 model. Identification of these as-yet-unknown susceptibility alleles should be aided by clues from the 40-gene CHEK2 signature.
Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes.
Specimen part
View SamplesHereditary sensory and autonomic neuropathy type I (HSAN-I) is neurological disorder characterized by distal sensory neuron dysfunction, frequent infections, and ulcerative mutilations. It remains unknown if HSAN-I directly dampens protective immunity. Here we report that HSAN-I-causing mutations of serine palmitoyltransferase long chain base subunit 2 (SPTLC2) affect human T cell responses. T cell antigenic stimulation and inflammation induce SPTLC2 expression. Murine T cell-specific ablation of Sptlc2 fundamentally impairs antiviral T cell survival and effector function. Mechanistically, SPTLC2-deficiency reduces sphingolipid biosynthetic flux and causes a prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress and CD8+ T cell death. Antiviral CD8+ T cell responses are restored by supplementing sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Our study reveals that SPTLC2 underpins protective adaptive immunity by translating extracellular stimuli into intracellular anabolic signals and reducing cellular stress to maintain metabolic reprogramming sustainability Overall design: Triplicates of each group were used for RNA-seq. Four groups were studied: Wild-type and SPTLC2-deficient CD8+ T cells, harvested from either naïve mice (D0) or mice infected with LCMV Armstrong 8 days earlier (D8).
Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8<sup>+</sup> T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness.
Treatment, Subject
View SamplesArgonaute (Ago) proteins, which act in post-transcriptional gene regulation directed by small RNAs, are vital for normal stem cell biology. Here we report the genomic characterization of stable Ago-deficient mouse embryonic stem cells (mESC) and determine the direct, primary and system level response to loss of Ago-mediated regulation. We find mESCs lacking all four Ago proteins are viable, do not repress microRNA (miRNA)-targeted cellular RNAs, and show distinctive gene network signatures. Profiling of RNA expression and epigenetic activity in an Ago mutant genetic series indicates that early responses to Ago loss are driven by transcriptional regulatory networks, in particular the Tgf-ß/Smad transcriptional network. This finding is confirmed using a time course analysis of Ago depletion and Ago rescue experiments. Detailed analysis places Tgf-ß/Smad activation upstream of cell cycle regulator activation, such as Cdkn1a, and repression of the c-Myc transcriptional network. The Tgf-ß/Smad pathway is directly controlled by multiple low-affinity miRNA interactions with Tgf-ß/Activin receptor mRNAs and receptor-mediated activation is required for Tgf-ß/Smad target induction with Ago loss. Our characterization reveals the interplay of post-transcriptional regulatory pathways with transcriptional networks in maintaining cell state and likely coordinating cell state transitions. Overall design: mRNA seq from stable genetic Dicer and Dgcr8 mutant mouse embryonic stem cells.
Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities.
Specimen part, Cell line, Subject
View SamplesBy using high-density DNA microarrays, we analyzed the gene-expression profile of SHSY5Y neuroblastoma cells after treatment with cobalt chloride
Investigation of Endogenous Retrovirus Sequences in the Neighborhood of Genes Up-regulated in a Neuroblastoma Model after Treatment with Hypoxia-Mimetic Cobalt Chloride.
Specimen part, Cell line
View SamplesPrimary human macrophages with a HIF-1alpha or HIF-2alpha knockdown were pretreated with IL-10 for 16h and afterwards for 4h additionaly under hypoxi (1% O2), RNA was isolated usind the Qiagen RNAeasy Kit and cDNA synthesis wos done using Ambion WT Expression Kit. Expression was compared to si control under control conditions.
Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.
Specimen part
View Samples