This SuperSeries is composed of the SubSeries listed below.
A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection.
Sex, Specimen part
View SamplesTranscriptomic comparison of 5 cell types during lethal and non-lethal influenza infection and further use of these signatures in a top-down systems analysis investigating the relative pathogenic contributions of direct viral damage to lung epithelium vs. dysregulated immunity during lethal influenza infection.
A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection.
Sex, Specimen part
View SamplesEnsuring cooperation among formerly autonomous cells has been a central challenge in the evolution of multicellular organisms. One solution is monoclonality, but this option does not eliminate genetic and epigenetic variability, leaving room for exploitative behavior. We therefore hypothesized that embryonic development must be protected by robust regulatory mechanisms that prevent aberrant clones from superseding wild-type cells. Using a genome-wide screen in murine induced pluripotent stem cells, we identified a network of genes (centered on p53, topoisomerase 1, and olfactory receptors) whose downregulation caused the cells to replace wild-type cells, both in vitro and in the mouse embryowithout perturbing normal development. These genes thus appear to fulfill an unexpected role in fostering cell cooperation.
Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen.
Specimen part, Treatment
View SamplesThe study was designed to identify differential expressed genes between human oral cavity carcinoma cell lines with and without LDBI knockout Overall design: Three parental human oral cavity carcinoma cell lines were used as control, LDB1 was knocked out in the three parent cell lines to create KO cell lines.
LIM-Only Protein 4 (LMO4) and LIM Domain Binding Protein 1 (LDB1) Promote Growth and Metastasis of Human Head and Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer).
No sample metadata fields
View SamplesREtr causes genomic instability in U937 cells. Activated forms of c-KIT, like c-KIT(N822K), rescues the Retr induced genomic instability by increasing the rate of DNA repair by homologous recombination
Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors.
Cell line
View SamplesIntroduction: Sepsis is a complex immunological response to infection characterized by early hyperinflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on SIRS differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing.
Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesBackground: Patients developing meningococcal septic shock reveal very high levels of Neisseira meningitidis and endotoxin in the circulation and organs, leading to acute cardiovascular, pulmonary and renal failure, coagulopathy and a high case fatality rate within 24 hours.
Extensive Changes in Transcriptomic "Fingerprints" and Immunological Cells in the Large Organs of Patients Dying of Acute Septic Shock and Multiple Organ Failure Caused by <i>Neisseria meningitidis</i>.
Specimen part, Disease
View Samples