Neuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.
Specimen part
View SamplesThe transcriptomic changes induced in the human liver cell line HepG2 by 100M menadione, 200M TBH or 50M H2O2 after treatment for 0.5, 1, 2, 4, 6, 8 and 24h.
Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach.
Cell line
View SamplesThe transcriptomics changes induced in the human liver cell line HepG2 by low and high doses of acetaminophen and solvent controls after treatment for 4 time points (12h, 24h, 48h and 72h)
Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.
Specimen part, Cell line, Time
View SamplesAdipose stroma in the mouse mammary gland undergoes remodeling throughout the 5 stages of development. These include nulliparous (virgin;never been pregnant), pregnant, lactating, involuting and regressed.
Pregnancy-associated breast cancers are driven by differences in adipose stromal cells present during lactation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.
Specimen part, Treatment
View SamplesUnderstanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in 21st century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their mechanisms of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (MWCNTs; Mitsui-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP) was observed for MWCNTs at a biologically relevant dose (0.25 g/cm2) and for asbestos at 2 g/cm2, but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature related to MWCNT- and asbestos-induced MMP. Fourty-nine of the MMP-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were associated with MMP and one of them, miR-1275, was found to negatively correlate with a large part of the MMP-associated genes. Cellular processes such as gluconeogenesis, glucose metabolism, mitochondrial LC-fatty acid -oxidation and spindle microtubule function were enriched among the MMP-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.
Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.
Specimen part, Treatment
View SamplesWe report Illumina next generation RNA sequencing (RNAseq) of NUP98-HOXA9 in vitro transformed murine LSKs upon genetic deletion of Mll1. These gene expression data illustrate that Mll1 regulates Hoxa, Hoxb and Meis1 expression in NUP98-HOXA9 transformed murine BM cells. Overall design: RNAseq comparing Mll1 homozygous knockout cells to Mll1 flox/flox control
NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis.
Cell line, Treatment, Subject
View SamplesTo understand the function and regulation of the C. elegans heat shock factor (HSF-1) in larval development, we have used ChIP-seq to analyze the occupancy of HSF1 and RNA Pol II in L2 larvae and young adult (YA) animals grown at 20°C or upon heat shock at 34°C for 30 min. In addition, we have used RNA-seq to analyze the transcriptomes of wild type (N2), hsf-1(ok600) mutants and hsf-1(ok600); rmSi1[hsf-1::gfp] L2 larvae grown at 20°C and characterized the gene expression change by heat shock in wild type (N2) animals at L2 stage. Overall design: Experiment type: RNA-seq. Biological Source: strain: N2, OG576, AM1061; developmental dtage: L2 Larva. Experimental Factors: temperature: 20 degree celsius.
E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response.
Specimen part, Cell line, Subject
View SamplesWe used microarrays to identify genes differentially expressed between mouse RUNX2 -/- and wt embryonic humeri at stage E14.5
Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2(-/-) mouse model.
No sample metadata fields
View SamplesThe heart adapts to increased workload through hypertrophic growth of cardiomyocytes. Although beneficial when induced physiologically by exercise, pathological cues including hypertension cause reexpression of fetal genes and dysfunctional hypertrophy, with lasting consequences for cardiac health. We hypothesised that these differences are driven by changes in chromatin-encoded cellular memory. We generated genome-wide maps of transcription and of two stable epigenetic marks, H3K9me2 and H3K27me3, specifically in hypertrophied cardiomyocytes, by selectively flow-sorting their nuclei. This demonstrated a pervasive loss of euchromatic H3K9me2 specifically upon pathological but not physiological hypertrophy, derepressing genes associated with pathological hypertrophy. Levels of the H3K9 methyltransferases, G9a and GLP, were correspondingly reduced. Importantly, pharmacological or genetic inactivation of these enzymes was sufficient to induce pathological hypertrophy and the dedifferentiation associated with it. These findings suggest novel therapeutic opportunities by defining an epigenetic state of cardiomyocytes, acquired during maturation, which is required for maintaining cardiac health. Overall design: Examination of 2 different histone modifications and RNA expression in cardiomyocyte nuclei flow-sorted from hypertrophic rat hearts
The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy.
No sample metadata fields
View Samples