refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 393 results
Sort by

Filters

Technology

Platform

accession-icon SRP057536
Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

How the parental genomes of the very specialized sperm and oocyte cells are remodelled upon fertilization to confer totipotency has remained a tantalizing open questions. Indeed, in the case of mammals, the parental genomes undergo dramatic reprogramming upon fertilization, including differential dynamics of histone post-translational modifications. The roles of histone modifying enzymes in this process, which are maternally provided, are only just starting to emerge. Here, we explore the function of the oocyte inherited pool of Lsd1/Kdm1a, which encodes a histone H3K4 and K9 demethylase, during early mouse development. Maternal deficiency of Lsd1/Kdm1a results in developmental arrest by the two-cell stage, associated with dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns depending on its demethylase activity. At the transcriptional level, two major changes occur. On one hand, switch from maternal-to-zygotic program fails to be induced. On the other hand, LINE-1 retrotransposons are not properly silenced, along with evidences for increased LINE-1 activity. We propose that Lsd1/Kdm1a is involved in the correct establishment of epigenetic information harboured by histones and is involved in the initiation of new pattern of genome expression driving early mouse development and preserving genome integrity Overall design: RNA-seq of invidual mouse two-cell stage embryos

Publication Title

Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066254
Lsd1 is an essential regulator of the chromatin and transcriptional landscapes during the maternal-to-zygotic
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

How the parental genomes of the very specialized sperm and oocyte cells are remodelled upon fertilization to confer totipotency has remained a tantalizing open questions. Indeed, in the case of mammals, the parental genomes undergo dramatic reprogramming upon fertilization, including differential dynamics of histone post-translational modifications. The roles of histone modifying enzymes in this process, which are maternally provided, are only just starting to emerge. Here, we explore the function of the oocyte inherited pool of Lsd1/Kdm1a, which encodes a histone H3K4 and K9 demethylase, during early mouse development. Maternal deficiency of Lsd1/Kdm1a results in developmental arrest by the two-cell stage, associated with dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns depending on its demethylase activity. At the transcriptional level, two major changes occur. On one hand, switch from maternal-to-zygotic program fails to be induced. On the other hand, LINE-1 retrotransposons are not properly silenced, along with evidences for increased LINE-1 activity. We propose that Lsd1/Kdm1a is involved in the correct establishment of epigenetic information harboured by histones and is involved in the initiation of new pattern of genome expression driving early mouse development and preserving genome integrity Overall design: RNA-seq of invidual mouse oocytes

Publication Title

Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE85173
Graded responses to variable TCR signaling are encoded in the affinities of AICE-containing enhancers responding to BATF and IRF4 [gene expression]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Variable strengths of T cell receptor (TCR) signaling can produce divergent outcomes for T cell development and function. The mechanisms leading to different outcomes are incompletely understood, but may include distinct activation thresholds for different transcription factors as well as distinct sensitivities among target genes to transcription factors. IRF4 is one transcription factor implicated in responses to variable TCR signal strength. IRF4 expression increases uniformly with increasing TCR signal strength (i.e., analog), but it is unclear how IRF4 induced distinct genes at different levels, rather than different amounts of the same genes. Here, we analyzed global gene expression in TH2 cells and used ChIP-seq to define the relationship between TCR signal strength, enhancer occupancy and transcriptional activity for BATF/IRF4-dependent genes. We show that enhancers exhibit a spectrum of affinity for the BATF/IRF4 ternary complex mediate graded responsiveness of individual genes to increasing TCR signal strength. Differential gene induction by BATF and IRF4 occurs through interaction with enhancer elements of different affinity for BATF/IRF4 complexes. The increased resolution of factor binding site identified using ChIP-exo allowed the identification of a novel AICE2 motif binding BATF/IRF4 with higher affinity and that this may explain the protective role of a single nucleotide polymorphism in the CTLA-4 locus known to decrease the incidence of autoimmune diseases.

Publication Title

Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87884
Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE87883
Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate (part 2)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.

Publication Title

Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE55227
Gene expression analysis of Cbfb-deficient LSK and GMP
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Runx/Cbfb heterodimers play important roles in the development of hematopoietic cells in mouse embryos and adults. In order to identify genes that are regulated by Runx/Cbfb, we purified Lin c-kit+ Sca1+ (LSK) cells and Lin c-kit+ Sca1 CD16/32+ (GMP) cells from Vav1-iCre x Cbfb(F/F) and Vav1-iCre x Cbfb(F/+) mice and profiled gene expression using microarray.

Publication Title

Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86596
Mafb lineage tracing marks macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Current systems for conditional gene deletion within mouse macrophage lineages are limited by ectopic activity or low efficiency; we generated a Mafb-driven Cre strain to determine whether any dendritic cells (DCs) identified by Zbtb46-GFP expression originate from a Mafb-expressing population

Publication Title

Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87882
Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate (part 1)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.

Publication Title

Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75012
Microarray expression data from monocytes, Mo-DCs and CD24 DCs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.

Publication Title

Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE75014
Microarray expression data from WT and IRF4 KO Sirp-a+ DCs
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.

Publication Title

Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact