Yeast cell cycle transcript dynamics in three S. cerevisiae strains grown at 30 degrees Celsius: cdc20 GALL-CDC20 (persistent mitotic CDK activity; CDK on), cdc8-ts (DNA replication checkpoint), GAL-cse4-353 (spindle assembly checkpoint), cdc8-ts cdc20 (DNA replication checkpoint, CDK on), and cdc8-ts cdc20, rad53-1 (DNA replication checkpoint without Rad53 activity, CDK on) in a BF264-15DU background. We compared transcript levels of genes previously shown to be periodically expressed in wild-type cells and in cells lacking all mitotic cyclins (clb1,2,3,4,5,6; CDK off).
Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.
No sample metadata fields
View SamplesTwo-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and Decapentaplegic
A combinatorial code for pattern formation in Drosophila oogenesis.
No sample metadata fields
View SamplesWe used microarrays to detail the global changes in gene expression resulting from miR-95 overexpression
miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1.
Cell line, Treatment
View SamplesEmbryonic chicken telencephalon nuclei were isolated for RNAseq to identify transcripts differentially expressed across different brain regions.
Neocortical Association Cell Types in the Forebrain of Birds and Alligators.
Sex, Specimen part
View SamplesNeuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.
Specimen part
View SamplesThe transcriptomic changes induced in the human liver cell line HepG2 by 100M menadione, 200M TBH or 50M H2O2 after treatment for 0.5, 1, 2, 4, 6, 8 and 24h.
Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Sex, Specimen part
View SamplesTelomere dysfunctional CMP/GMP have deregulated pathways that are associated with DNA damage signaling
Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Sex, Specimen part
View SamplesPurpose: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols in the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their beneficial effects.
Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.
Sex, Specimen part, Cell line, Race
View SamplesThis study was performed to check that ESR1 and BMI1 are biologically active after lentiviral transduction of primary human mammary epithelial cells (HMECs) with lentiviral vectors expressing ESR1 and BMI1 from the human PGK promoter. ESR1 targets like PGR, PRLR and GREB1, but not TFF1 and XBP1, were induced by estradiol in the ESR1-expressing cells. BMI1 targets like BMI1, NEFL and CCND2 were repressed in the BMI1-expressing cells. BMI1 suppressed genes associated with squamous and neural differentiation in the ESR1 plus BMI1-expressing cells.
An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells.
No sample metadata fields
View Samples