Analysis of tissues of DBA/2 mice fed a standard breeding diet (SBD) and high fat diet (HFD) revealed tissue specific roles in inflammation and disease, and altered communication between tissues. The tissues surveyed incuded adipose tissues (brown, inguinal, mesenteric, retro-peritoneal, subcutaneious and gonadal), muscle and liver.
High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice.
Specimen part, Treatment
View SamplesA Single Cell Analysis of Myogenic Dedifferentiation Induced by Small Molecules An important direction in chemical biology is the derivation of compounds that affect cellular differentiation or its reversal. The fragmentation of multinucleate myofibers into viable mononucleates (called cellularisation) occurs during limb regeneration in urodele amphibians and the isolation of myoseverin, a tri-substituted purine that could apparently activate this pathway of myogenic dedifferentiation in mammalian cells, generated considerable interest. We have explored the mechanism and outcome of cellularisation at a single cell level, and report findings that significantly extend the previous work with myoseverin. Using a panel of compounds, including a novel triazine compound called 109 with structural similarity and comparable activity to myoseverin, we have identified microtubule disruption as critical for activation of the response. Our analysis has included the related control triazine compound 401, and the microtubule disrupting agent nocodazole. Time-lapse microscopy has enabled us to analyse the fate of identified mononucleate progeny, and directly assess the extent of dedifferentiation.
A single-cell analysis of myogenic dedifferentiation induced by small molecules.
Specimen part, Cell line, Compound, Time
View SamplesIn previous studies, miR-1825 has been found to be downregulated in the serum of familial and sporadic patients with amyotrophic lateral sclerosis (ALS). In this study, we aim to identify the target mRNAs of miR-1825 using a combination of proteomic and transcriptomic approaches.
Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS.
Cell line
View SamplesCD4(+) type 1 T regulatory (Tr1) cells are induced in the periphery and have a pivotal role in promoting and maintaining tolerance. The absence of surface markers that uniquely identify Tr1 cells has limited their study and clinical applications. By gene expression profiling of human Tr1 cell clones, we identified the surface markers CD49b and lymphocyte activation gene 3 (LAG-3) as being stably and selectively coexpressed on mouse and human Tr1 cells. We showed the specificity of these markers in mouse models of intestinal inflammation and helminth infection and in the peripheral blood of healthy volunteers. The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation. The use of these markers makes it feasible to track Tr1 cells in vivo and purify Tr1 cells for cell therapy to induce or restore tolerance in subjects with immune-mediated diseases.
Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells.
Specimen part, Treatment, Time
View SamplesInflammation is a beneficial host response to infection, but it also contributes to inflammatory disease if unregulated. The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases. These cells exhibit both instability (i.e., they can cease to express their signature cytokine, IL-17A) and plasticity (i.e., they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation. However technical limitations prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses. Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as “transdifferentiation”. Furthermore, while Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate. Here we used two novel fate-mapping mouse models to track Th17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of Th17 into regulatory T cells was illustrated by a global change in their transcriptome and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF- ß signaling and the aryl hydrocarbon receptor (AhR) in conversion. Thus, Th17 transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases. Overall design: We isolated intestinal lymphocytes from two independent experiments, each using 5 mice injected with anti-CD3 mAb. Th17, exTh17, Tr1 exTh17, Tr1, Foxp3 Treg and Foxp3 IL-10+ Treg cell populations were FACS-sorted from these two independent experiments and the cells of each population were pooled before the analysis. Around 5,000 cells for each population were processed.
Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation.
No sample metadata fields
View SamplesExpression profiles for isogenic (129SvJae x C57BL/6) murine embryonic stem (ES) cells, neural precursors (NPC) obtained through in vitro differentiation of the ES cells, and embryonic fibroblasts (MEF) obtained at day 13.5.
Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.
No sample metadata fields
View SamplesThis experiment series addresses the role of coactivator SRC-1/NcoA-1 for the induction of interleukin-6 (IL-6) target genes in HepG2 cells. For that purpose, HepG2 human hepatocellular carcinoma cells were manipulated to stably express an shRNA that knocks down SRC-1 expression yielding the HepG2-Src1 cells. Either unmanipulated HepG2 or HepG2-Src1 cells were then treated for various periods with IL-6.
Co-activator SRC-1 is dispensable for transcriptional control by STAT3.
No sample metadata fields
View SamplesAbstract
Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line.
No sample metadata fields
View SamplesIL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation. Overall design: We carried out high troughput RNA sequencing of RNA isolated from IL-10 producing Foxp3- CD4+ T-cells, which were isolated from the spleen of mice treated with anti-CD3 antibody.
Molecular and functional heterogeneity of IL-10-producing CD4<sup>+</sup> T cells.
Subject
View SamplesA consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements. Pathological studies have confirmed that there is relative sparing of the cranial motor nuclei of the oculomotor, trochlear and abducens nerves, although pathological changes resembling those seen in anterior horn cells are present to a lesser degree. The aim of the present study is to combine LCM and microarray analysis to study the differences between motor neurons that are selectively resistant (oculomotor neurons) and those that are vulnerable (lumbar spinal motor neurons) to the disease process in amyotrophic lateral sclerosis.
Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity.
Specimen part, Disease, Disease stage
View Samples