small RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View SamplesAnalysis of estrogen receptor (ER)-positive MCF7 cell total RNA expression and polysome-assiciated RNA expression following treatment with estradiol (E2) and vehicle (etoh).
Estrogen coordinates translation and transcription, revealing a role for NRSF in human breast cancer cells.
Cell line
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View SamplesBackground: Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeqTM Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq.To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Results: Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson’s r=0.92) and Ion Torrent Proton (Pearson’s r=0.92). We used ROC, Matthew’s correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Conclusions: Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy. Overall design: Comprehensive, performance evaluation of AmpliSeq Transcriptome to standard whole-transcriptome RNA-sequencing methods for large-scale, genome-wide differential gene expression analysis. We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs).
Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
No sample metadata fields
View SamplesPurpose: The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed a novel algorithm, NetSurgeon, which utilizes genome-wide gene regulatory networks to identify interventions that force a cell toward a desired expression state. Results: We used NetSurgeon to select transcription factor deletions aimed at improving ethanol production in S. cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional states of cells utilizing xylose toward the fermentative state typical of cells that are producing ethanol rapidly (while utilizing glucose) might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. Conclusions: We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future metabolic engineering efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism. Overall design: Mutant and wildtype S. cerevisiae cells were put into 48 hour aerobic batch fermentations of synthetic complete medium supplmented with 2% glucose and 5% xylose and culture samples were taken at 4 hours and 24 hours for transcriptional profiling performed by RNA-Seq analysis. In addition, wildtype S. cerevisiae cells were grown in various single carbon sources for 12 hours and culture samples were taken for transcriptional profiling performed by RNA-Seq analysis.
Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast.
Subject
View SamplesPancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer in which differences in survival rates might be related to a variety in gene expression profiles. Although the molecular biology of PDAC begins to be revealed, genes or pathways that specifically drive tumour progression or metastasis are not well understood. Therefore, we performed microarray analyses on whole-tumour samples of 2 human PDAC subpopulations with similar clinicopathological features, but extremely distinct survival rates after potentially curative surgery, i.e., good outcome (OS and DFS>50months) versus bad outcome (OS<19months and DFS<7months). Additionally, liver- and peritoneal metastases were analysed and compared to primary cancer tissue. The integrin and ephrin receptor families were upregulated in all PDAC samples, irrespective of outcome, supporting an important role of the interaction between pancreatic cancer cells and the surrounding desmoplastic reaction in tumorigenesis and cancer progression. Moreover, some components, such as ITGB1 and EPHA2, were upregulated in PDAC samples with a poor outcome, Additionally, overexpression of the non-canonical Wnt/-catenin pathway and EMT genes in PDAC samples with bad versus good outcome suggests their contribution to the invasiveness of pancreatic cancer, with -catenin being also highly upregulated in metastatic tissue. Thus, we conclude that components of the integrin and ephrin pathways and EMT-related genes might serve as molecular markers in pancreatic cancer as their expression seems to be related with prognosis.
Molecular markers associated with outcome and metastasis in human pancreatic cancer.
Sex, Age, Specimen part, Disease stage
View SamplesFew studies have investigated heterogeneity of selection response in replicate lines subjected to equivalent selection. We developed 4 replicate lines of mice based on high levels of voluntary wheel running (high runner or HR lines) while also maintaining 4 non-selected control lines. This led to the unexpected discovery of the HR mini-muscle (HRmini) phenotype, recognized by a 50% reduction in hindlimb muscle mass, which became fixed in 1 of the 4 HR selected lines.
Gene expression profiling of gastrocnemius of "minimuscle" mice.
Sex, Specimen part
View SamplesStudy on changes in gene expression in primary cultures of neonatal rat ventricular cardiomyocytes to electric stimulation.
Electrical signals affect the cardiomyocyte transcriptome independently of contraction.
Treatment
View SamplesAs a result of ancestral whole genome and small-scale duplication events, the genome of Saccharomyces cerevisiae's, and of many eukaryotes, still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (MG strain). Remarkably, a combination of quantitative, systems approach and of semi-quantitative analysis in a wide array of growth environments revealed the absence of phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic for S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means for fixing minor glycolytic paralogs in the yeast genome. MG was carefully designed and constructed to provide a robust, prototrophic platform for quantitative studies, and is made available to the scientific community. Overall design: The goals of the present study are to experimentally explore genetic redundancy in yeast glycolysis by cumulative deletion of minor paralogs and to provide a new experimental platform for fundamental yeast research by constructing a yeast strain with a functional 'minimal glycolysis'. To this end, we deleted 13 minor paralogs, leaving only the 14 major paralogs for the S. cerevisiae glycolytic pathway. The cumulative impact of deleting all minor paralogs was investigated by two complementary approaches. A first, quantitative analysis focused on the impact on glycolytic flux under a number of controlled cultivation conditions that, in wild-type strains, result in different glycolytic fluxes. These quantitative growth studies were combined with transcriptome, enzyme-activity and intracellular metabolite assays to capture potential small phenotypic effects. A second, semi-quantitative characterization explored the phenotype of the 'minimal glycolysis' strain under a wide array of experimental conditions to identify potential context-dependent phenotypes
The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the <i>Saccharomyces</i> Genus.
Cell line, Subject
View SamplesAlthough skeletal muscle cells can be generated from human iPSCs, transgene-free protocols include only limited options for their purification and expansion. In this study we found that FACS-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 x 1011 fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of the acid alpha glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies. Overall design: Myogenic progenitors were expanded for ~15 days and harvested either in proliferation conditions or after 4 days of differentiation as described previously (van der Wal et al., 2017b). RNA was extracted using the RNeasy minikit with DNAse treatment (Qiagen, Germantown, MD). Sequencing libraries were prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, California, USA) according to the manufacturer's instructions. Libraries were sequenced on a HiSeq2500 sequencer (Illumina, San Diego, California, USA) in rapid-run mode according to the manufacturer's instructions. Reads 50 base-pairs in length were generated. The RNA-sequencing datasets listed in table S3 were downloaded and aligned with the datasets generated in this study using the 'new Tuxedo' pipeline (Pertea et al., 2016). The processed data file includes the analysis of 30 additonal Samples from other research groups, partly from GEO and partly from other sources such as ENCODE and ENA. The header table linked below lists the origin of the other Samples.
Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies.
Specimen part, Disease, Disease stage, Subject
View Samples