refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 915 results
Sort by

Filters

Technology

Platform

accession-icon GSE18592
Estrogen Coordinates Translation and Transcription Revealing a Role for NRSF in Human Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of estrogen receptor (ER)-positive MCF7 cell total RNA expression and polysome-assiciated RNA expression following treatment with estradiol (E2) and vehicle (etoh).

Publication Title

Estrogen coordinates translation and transcription, revealing a role for NRSF in human breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77498
Induced loss of p53 in mammary luminal cells leads to their clonal expansion and facilitates development of mammary tumours with loss of luminal identity
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Diversity Genotyping Array (mousedivm520650), Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14753
Mammary tumors from K14-cre; ApcCKO/+ mice vs control mammary glands
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Many components of Wnt/-catenin signaling pathway also play critical roles in mammary tumor development. To study the role of Apc in mammary tumorigensis, we introduced conditional Apc mutations specifically into two different mammary epithelial populations using K14-Cre (progenitor) and WAP-cre (lactaing luminal) transgenic mice. Only the K14-cre mediated Apc heterozygosity developed mammary adenocarcinomas demonstrating histological and molecular heterogeneity, suggesting the progenitor cell origin of these tumors. These tumors harbored truncation mutation in a very defined region in the remaining wild-type allele of Apc that would retain some down-regulating activity of -catenin signaling. Our results suggest that not only the epithelial origin but also a certain Apc mutations are selected to achieve a specific level of -catenin signaling optimal for mammary tumor development.

Publication Title

Genetic mechanisms in Apc-mediated mammary tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE95042
KDM4 inhibition targets breast cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Cancer progression is associated with alterations of epigenetic regulators such as histone-lysine demethylases 4 (KDM4)2-5. During breast cancer therapy, classical treatments fail to address resistant cancer stem cell populations6-10. Here, we identified a novel KDM4 inhibitor (KDM4(i)) with unique preclinical characteristics. KDM4(i) is a highly potent pan KDM4 inhibitor that specifically blocks the demethylase activity of KDM4A, B, C, and D but not that of the other members of the KDM family. We validated the KDM4(i) anti-tumoral properties under conditions recapitulating patient tumors. Therefore, we established a method to isolate and grow triple-negative breast cancer stem cells (BCSCs) from individual patient tumors after neoadjuvant chemotherapy. Limiting dilution orthotopic xenografts of these BCSCs faithfully regenerate original patient tumor histology and gene expression. KDM4(i) blocks proliferation, sphere formation and xenograft tumor growth of BCSCs. Importantly, KDM4(i) abrogates expression of EGFR, a driver of therapy-resistant triple-negative breast tumor cells11, via inhibition of the KDM4A demethylase activity. Taken together, we present a unique BCSC culture system as a basis for therapeutic compound identification and demonstrate that KDM4 inhibition is a new therapeutic strategy for the treatment of triple-negative breast cancer.

Publication Title

KDM4 Inhibition Targets Breast Cancer Stem-like Cells.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE114438
A PDGFR-driven mouse model of Glioblastoma reveals a Stathmin1-mediated mechanism of sensitivity to Vinblastine
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Glioblastoma multiforme (GBM) is an aggressive primary brain cancer that includes focal amplification of PDGFR and for which there are no effective therapies. Herein, we report the development of a genetically engineered mouse model of GBM based on autocrine, chronic stimulation of PDGFR and the analysis of GBM signaling pathways using proteomics. We discovered the tubulin-binding protein Stathmin1 (STMN1) as a PDGFR phospho-regulated target and that this mis-regulation conferred selective sensitivity to vinblastine (VB) cytotoxicity. Treatment of PDGFR GBMs with VB in mice drastically prolonged survival and was dependent on STMN1. Our work provides a rationale for evaluating genotype-specific anti-microtubule drugs as cancer treatment in select GBM patient populations.

Publication Title

A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE7035
Synergy between PPARgamma ligands and platinum-based drugs in cancer
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

PPAR is a member of the nuclear receptor family for which agonist ligands have anti-growth effects. However, clinical studies using PPAR ligands as a monotherapy failed to show a beneficial effect. Here we have studied the effects of PPAR activation with chemotherapeutic agents in current use for specific cancers. We observed a striking synergy between rosiglitazone and platinum-based drugs in several different cancers both in vitro and using transplantable and chemically induced spontaneous tumor models. The effect appears to be due in part to PPAR-mediated downregulation of metallothioneins, proteins that have been shown to be involved in resistance to platinum-based therapy. These data strongly suggest combining PPAR agonists and platinum-based drugs for the treatment of certain human cancers

Publication Title

Synergy between PPARgamma ligands and platinum-based drugs in cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12628
Cardiac samples from OTT1 null/null and OTT1 null/wt embryonic mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The infant leukemia-associated gene, Ott1(Rbm15), has broad regulatory effects within the murine hematopoiesis. However, germline Ott1 deletion results in fetal demise prior to E10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs, and in Drosophila has a significant role in the development of the head and thorax. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. Rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This result shows that the process of vascular branching morphogenesis in Ott1-deficient animals is regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts shows enrichment of hypoxia-related genes and significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways in addition to being implicated in leukemogenesis, may also be important in the pathogenesis of placental insufficiency and cardiac malformations.

Publication Title

Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043074
Gene expression changes after loss of C/EBPa in transformed HSCs [CEBPA RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq characterization of gene expression changes 72 hours after genomic excision of Cebpa in murine hematopoietic progenitors from Cebpaf/f;CreER mice transformed by Hoxa9/Meis1. In the presence of tamoxifen (4OHT), Cre-ER localizes to the nucleus of cells allowing for excision of Cebpa and loss of C/EBPa protein levels. Loss of C/EBPa leads to a decrease in cellular proliferation. Overall design: Examination of gene expression by RNAseq in two conditions in biological replicates.

Publication Title

C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043077
Gene expression changes after loss of Hoxa9 in transformed HSCs [HOXA9 RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Characterization of gene expression changes 72 hours after withdrawal of tamoxifen in murine hematopoietic progenitors transformed by Hoxa9-ER/Meis1 using RNAseq. In the presence of tamoxifen (4OHT), Hoxa9-ER localizes to the nucleus of cells allowing for transformation, while withdrawal of 4OHT (culture in EtOH) leads to loss of nuclear Hoxa9-ER. Loss of Hoxa9-ER leads to a decrease in cellular proliferation and differentiation along the myeloid lineage. Overall design: Examination of gene expression by RNAseq in two conditions in biological replicates.

Publication Title

C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13490
Cancer Stem Cells Are Enriched In The Side-Population Cells In A Mouse Model Of Glioma
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The recent identification of cancer stem cells (CSCs) in multiple human cancers provides a new inroad to understanding tumorigenesis at the cellular level. CSCs are defined by their characteristics of self-renewal, multipotentiality, and tumor initiation upon transplantation. By testing for these defining characteristics, we provide evidence for the existence of CSCs in a transgenic mouse model of glioma, S100-verbB;Trp53. In this glioma model, CSCs are enriched in the side-population (SP) cells. These SP cells have enhanced tumor-initiating capacity, self-renewal, and multipotentiality compared to non-SP cells from the same tumors. Furthermore, gene expression analysis comparing FACS-sorted cancer SP cells to non-SP cancer cells and normal neural SP cells identified 45 candidate genes that are differentially expressed in glioma stem cells. We validated the expression of two genes from this list (S100a4 and S100a6) in primary mouse gliomas and human glioma samples. Analyses of xenografted human GBM (glioblatoma multiforme) cell lines and primary human glioma tissues show that S100A4 and S100A6 are expressed in a small subset of cancer cells and that their abundance is positively correlated to tumor grade. In conclusion, this study shows that CSCs exist in a mouse glioma model, suggesting that this model can be used to study the molecular and cellular characteristics of CSCs in vivo and to further test the cancer stem cell hypothesis.

Publication Title

Cancer stem cells are enriched in the side population cells in a mouse model of glioma.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact