We studied the in vitro and in vivo efficacy of the HDAC inhibitor Givinostat/ITF2357 in BCP-ALL with CRLF2 rearrangements. We used BCP-ALL CRLF2- rearranged MHH-CALL4 and MUTZ5 cell lines as well as blasts from CRLF2 rearranged BCP-ALL patients and patients derived xenograft samples. We conclude that Givinostat may represent a novel and effective tool, in combination with current chemotherapy, to treat this subsets of ALL with poor prognosis and chemotherapy-related toxicity.
The histone deacetylase inhibitor givinostat (ITF2357) exhibits potent anti-tumor activity against CRLF2-rearranged BCP-ALL.
Specimen part, Treatment
View SamplesSeventeen T-ALL patients out of 120 (14.2%) presented CRLF2 expression 5 times higher than the median (CRLF2-high) with a significantly inferior 5-y EFS and an increased CIR compared to CRLF2-low patients.GEP of 15 T-ALL patients with (CRLF2-high) were compared to 15 CRLF2-low patients. GSEA identified cell cycle deregulating gene sets.
CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia.
Disease
View SamplesBecause most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions.
Transcriptomics of post-stroke angiogenesis in the aged brain.
Sex, Age, Specimen part
View SamplesProgressive failure of insulin-producing beta cells is the central event leading to diabetes, yet the signalling networks controlling beta cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining function and survival of human beta cells. RNA-seq analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion and JNK signalling. Specifically, SRp55-mediated splicing changes modulate the function of the pro-apoptotic proteins BIM and BAX, JNK signalling and endoplasmic reticulum stress, explaining why SRp55 depletion triggers beta cell apoptosis. Furthermore, SRp55 depletion inhibits beta cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human beta cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55 that may crosstalk with candidate genes for diabetes. Overall design: Five independent preparations of EndoC-ßH1 cells exposed to control (siCTL) or SRp55 (siSR#2) siRNAs
SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival.
Treatment, Subject
View SamplesDuplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a key causal role in tumorigenesis. According to an alternative view, chromosomal instabilities are mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that deregulation of some key pathways, such as MAPK, p53, cell cycle regulation and Polycomb group factors, in addition to activation of several genes like Myc, AML, B-Catenin and the ETS family transcription factors, are key steps in cancer development driven by 20q amplification. Finally we identified 13 cancer initiating genes, located on 20q13, which were significantly overexpressed in many tumors, with expression levels correlated with tumor grade and outcome; these probably play key roles in inducing malignancy via20q amplification.
Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer.
Specimen part
View SamplesMicroenviromental niche characterization by comparative transcriptome profiling. The hypothesis tested in the present study was that unique properties of the perivascular niche within remyelinating white matter would create microenvironment that favor the alternative differentiation of oligodendrocyte precursor cells.
Injury-induced perivascular niche supports alternative differentiation of adult rodent CNS progenitor cells.
Sex, Specimen part, Time
View SamplesThe subsets of immune cells within the human placenta are incompletely described. We used microarray to determine the transcriptional differences between two myeloid subsets in the term human placenta.
Two Distinct Myeloid Subsets at the Term Human Fetal-Maternal Interface.
Specimen part
View SamplesThe generation of induced pluripotent stem cells (iPSCs) and the direct conversion approach provide an invaluable resource of cells for disease modeling, drug screening, and patient-specific cell-based therapy. However, while iPSCs are stable and resemble ESCs in their transcriptome, methylome and function, the vast majority of the directly converted cells represent an incomplete reprogramming state as evident by their aberrant transcriptome and transgene dependency. This raises the question of whether complete and stable nuclear reprogramming can be achieved only in pluripotent cells. Here we demonstrate the generation of stable and fully functional induced trophoblast stem cells (iTSCs) by transient expression of Gata3, Tfap2c and Eomes. Similarly to iPSCs, iTSCs underwent a complete and stable reprogramming process as assessed by transcriptome and methylome analyses and functional assays such as the formation of hemorrhagic lesion and placenta contribution. Careful examination of the conversion process indicated that the cells did not go through a transient pluripotent state. These results suggest that complete nuclear reprograming can be attained in non-pluripotent cells. Overall design: Technical duplicates of 10 samples
Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells.
No sample metadata fields
View SamplesWe performed microarray analysis to evaluate differences in the transcriptome of type 2 diabetic human islets compared to non-diabetic islet samples.
Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesWe used Illumina-HiSeq4000 to sequence 4sU-labelled RNA samples isolated from unchallenged and DNA damaged HeLa Flp-In cells, which revealed the nature of transcriptional response folowing genotoxic stress and the contribution of P-TEFb kinase in DNA damage-induced gene transcription. Overall design: We mock treated or treated HeLa Flp-In cells for 1 or 2 hr with DMSO, 4-NQO, or 4-NQO + flavopiridol (FP) as indicated below. During the last 30 minutes of the treatments, we labeled the RNA or not with the nucleoside analogue 4-thiouridine (500µM 4sU) for 30 minutes.
P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress.
Cell line, Subject
View Samples