Analysis of the gene signature of steatosis associated to obesity in hepatocytes of Zucker fa/fa obese rats and their controls; identifying target genes linked to steatosis progression. or Obesity and insulin resistance-associated steatosis can be a non-inflammatory condition affecting hepatocytes or progress to steatohepatitis: a condition that can result in end-stage liver disease. Although molecular events leading to accumulation of lipid droplets in the liver have been identified individually, the complexity of the condition suggested that emergent target would be uncovered by a more comprehensive examination. Then, this study was aimed at establishing a gene signature of steatosis in hepatocytes and at identifying target genes linked to steatosis progression. Using Affymetrix oligonucleotide arrays, we compared transcriptomes of hepatocytes isolated from Zucker "fa/fa" obese rats with three different age-related grades of steatosis with those of their counterpart non-steatotic cells.
A subset of dysregulated metabolic and survival genes is associated with severity of hepatic steatosis in obese Zucker rats.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesRNA-Seq was used to profile transcriptional changes induced by overexpression of the long non-coding RNA SLNCR1, as well as mutant version SLNCR1 delta conserved and SLNCR1 conserved. Overall design: The A375 melanoma cell line was transfected with pcDNA3.1 (-) expressing either full length SLNCR1, SLNCR1 delta conserved, or SLNCR1 conserved.
The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region.
No sample metadata fields
View SamplesRNA-Seq was used to profile transcriptional changes induced by siRNA knockdown of the long non-coding RNA SLNCR1. Overall design: The WM1976 melanoma short-term culture was transfected with either scrambled or SLNCR1-targeting siRNAs
The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region.
No sample metadata fields
View Samples