Here we characterize the changes in the forebrain transcriptome resulting from the deletion of the transcription factor Lhx6, generated by RNA-seq technology with biologic replication. Lhx6 is an essential regulatory gene in the development of cortical interneurons generated in the medial ganglionic eminences of the embryonic brain. This data contains insights into gene networks important for the development of medial ganglionic eminence derived interneurons. Overall design: Forebrain total RNA profiles of 15-day old Lhx6 heterozygote (Het) and Lhx6 null mice were generated by deep sequencing, using Illumina GAIIx. Mutant allele used was Lhx6tm2Vpa (MGI:3702518). Each individual sample was comprised of two animals. Four samples for Lhx6 Het and three samples for Lhx6 null mice were generated and analysed in parallel.
Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex.
Cell line, Subject
View SamplesRecent research hints at an underappreciated complexity in pre-miRNA processing and regulation. Global profiling of pre-miRNA and its potential to increase understanding of the pre-miRNA landscape is impeded by overlap with highly-expressed classes of other non-coding RNA. Here we present a dataset excluding these RNA before sequencing through locked nucleic acids (LNA), greatly increasing pre-miRNA sequence counts with no discernable effects on pre-miRNA or mature miRNA sequencing. Analysis of profiles generated in total, nuclear, and cytoplasmic cell fractions reveals pre-miRNAs are subject to a wide range of regulatory processes involving loci-specific 3'- and 5'-end variation entailing complex cleavage patterns with co-occurring polyuridylation. Additionally, examination of nuclear-enriched flanking sequences of pre-miRNA, particularly those derived from polycistronic miRNA transcripts, provides insight into miRNA and miRNA-offset (moRNA) production. Our findings point to particularly intricate regulation of the let-7 family, introduce novel and unify known forms of pre-miRNA regulation and processing, and shed new light on the byproducts of miRNA processing pathways. none provided
pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex 5'/3' arm variation including concomitant cleavage and polyuridylation patterns.
No sample metadata fields
View SamplesInduced pluripotent stem cells (iPSCs) are an essential tool for studying cellular differentiation and cell types that are otherwise difficult to access. Here we investigate the use of iPSCs and iPSC-derived cells to study the impact of genetic variation across different cell types and as models for the genetics of complex disease. We established a panel of iPSCs from 58 well-studied Yoruba lymphoblastoid cell lines (LCLs); 14 of these lines were further differentiated into cardiomyocytes. We characterized regulatory variation across individuals and cell types by measuring RNA, chromatin accessibility and DNA methylation. Regulatory variation between individuals is lower in iPSCs than in the differentiated cell types, consistent with the intuition that developmental processes are generally canalized. While most cell-type- specific regulatory effects lie in chromatin that is open only in the affected cell-types, we find that 20% of cell-type specific effects are in shared open chromatin. Finally, we developed deep neural network models to predict open chromatin regions in these cell types from DNA sequence alone and were able to use the sequences of segregating haplotypes to predict the effects of common SNPs on tissue-specific chromatin accessibility. Our results provide a framework for using iPSC technology to study regulatory variation in cell types that are otherwise inaccessible. Keywords: Expression profiling by high throughput sequencing Overall design: Immortalized lymphoblastoid cell lines from 58 African individuals were reprogrammed into induced pluripotent stem cells
Impact of regulatory variation across human iPSCs and differentiated cells.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetic Variation, Not Cell Type of Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs.
Sex, Age
View SamplesAnalysis of contribution of cell type of origin and individual to gene expression differences in iPSCs. The hypothesis tested in the present study was that cell type of origin affects iPSC gene expression. Results show that individual has a much stronger effect than cell type of origin on differences between iPSCs derived from multiple individuals.
Genetic Variation, Not Cell Type of Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs.
Sex, Age
View SamplesRNA-Seq analysis of SSA treated cells Overall design: HeLa cells, nuclear and cytoplasmic fractions, treated with SSA or MeOH
Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A.
No sample metadata fields
View SamplesCells respond heterogeneously to DNA damage. We engineered genetic circuits to detect differential responses in a population that persist for many days post-stimulus.
Synthetic memory circuits for tracking human cell fate.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
Cell line, Time
View SamplesGenome-wide expression analysis of hapmap lymphoblastoid and ENCODE project cell lines stimulated with calcitriol
A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
Cell line, Time
View SamplesGenome-wide expression analysis of hapmap lymphoblastoid and ENCODE project cell lines stimulated with calcitriol and/or estrogen
A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
Cell line, Time
View Samples