refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon SRP014009
DGCR8 HITS-CLIP reveals novel functions for the Microprocessor (CLIP-seq)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

The Drosha-DGCR8 complex (Microprocessor) is required for microRNA (miRNA) biogenesis. DGCR8 contains two double-stranded RNA binding motifs that recognize the RNA substrate, whereas Drosha functions as the endonuclease. We have used high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) to identify endogenous RNA targets of DGCR8 in mammalian cells. Unexpectedly, miRNAs were not the most abundant targets. DGCR8-bound RNAs comprised several hundred mRNAs as well as snoRNAs and long non-coding RNAs. We found that DGCR8 together with Drosha controls the abundance of several mRNAs, as well as long non-coding RNAs, such as MALAT-1. By contrast, the DGCR8-mediated cleavage of snoRNAs is independent of Drosha, suggesting the involvement of DGCR8 in cellular complexes with other endonucleases. Interestingly, binding of DGCR8 to cassette exons, acts as a novel mechanism to regulate the relative abundance of alternatively spliced isoforms. Collectively, these data provide new insights in the complex role of DGCR8 in controlling the fate of several classes of RNAs. Overall design: Comparison of RNAs associated to both endogenous (D8) and overexpressed (T7) DGCR8 in HEK293T cells

Publication Title

Drosha regulates gene expression independently of RNA cleavage function.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE16674
Analysis of gene expression in miR-34a overexpressing K562 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

miR-34a is strongly induced upon TPA-induced megakaryocyte differentiation of K562 cells. To investigate the gene networks regulated by this miRNA during the process of differentiation we performed gene microarray analysis in K562 cells overexpressing miR-34a or a control sequence.

Publication Title

miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE7540
Gene expression analysis of the human and chimpanzee brain
  • organism-icon Pan troglodytes, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The origin of humans was accompanied by the emergence of new behavioral and cognitive functions, including language and specialized forms of abstract representation. However, the molecular foundations of these human capabilities are poorly understood. Because of the extensive similarity between human and chimpanzee DNA sequences, it has been suggested that many of the key phenotypic differences between species result primarily from alterations in the regulation of genes rather than in their sequences.

Publication Title

Elevated gene expression levels distinguish human from non-human primate brains.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP187302
Slow transcriptional elongation causes embryonic lethality and perturbs kinetic coupling of long neural genes [4sURDB-Seq]
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The rate of RNA Polymerase II (RNAPII) elongation has an important role in the control of Alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked-in for a slow elongating form of RNAPII. We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice and impairs the differentiation of ESCs into the neural lineage. This is accompanied by changes in splicing and in gene expression in ESCs and along the pathway of neuronal differentiation. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is more predominant in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development. Overall design: 4sURDB-Seq mouse wt and homozygous Polr2a[R749H] mutant embryonic stem cells in triplicates.

Publication Title

A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE19592
DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small cell lung cancer
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DUSP1 is involved in different cellular pathways including cancer cell proliferation, angiogenesis, invasion and resistance to chemotherapy. To understand more about the cellular responses regulated by DUSP1 in NSCLC cells, we interfered DUSP1 expression in the NSCLC cell line H460 and studied the changes in gene expression differentially regulated by this phosphatase.

Publication Title

DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact