Analysis of gene-expression profiles with microarrays can be very useful to dissect specific responses and to characterize with a global view, new elements for improving the diagnosis, treatment and understanding of allergic diseases. We have used this approach for studying the olive pollen response, taking advantage our previous results of T-cell epitope mapping on Ole e 1 molecule (the major allergen from olive pollen) in order to analyze the stimuli influence on the gene-expression of olive pollen allergic patients. Peripheral blood mononuclear cells (PBMCs) from 6 healthy controls and 6 allergic subjects were stimulated 24 hours with olive pollen stimuli: Ole e 1 molecule and two Ole e 1 peptides previously defined as P2+3 (aa10-31), mainly recognized by non-allergic subjects (possible immunoregulatory epitope) and P10+12+13 (aa90-130), immunodominant T-cell epitope. RNA extracted from basal and stimulated PBMCs was analyzed by HuGeU133 plus 2.0 GeneChip, Affymetrix (38.500genes). After assessment of data quality by standard quality checks and principal components analysis (PCA), differential gene-expression by experimental conditions was performed by multiple testing, using microarrays specific software. Differences in functional analysis were performed by KEGG, for pathways and Gene-Ontology for biological process. The results of gene-expression by PCA showed differential clusters that correlated with the experimental conditions from samples of allergic patients. Analysis of differential gene-expression by multiple testing, and functional analysis by KEGG and Gene-Ontology revealed differential genes and pathways among the 4 experimental conditions.
Therapeutic targets for olive pollen allergy defined by gene markers modulated by Ole e 1-derived peptides.
Specimen part, Disease
View SamplesHereditary sensory and autonomic neuropathy type I (HSAN-I) is neurological disorder characterized by distal sensory neuron dysfunction, frequent infections, and ulcerative mutilations. It remains unknown if HSAN-I directly dampens protective immunity. Here we report that HSAN-I-causing mutations of serine palmitoyltransferase long chain base subunit 2 (SPTLC2) affect human T cell responses. T cell antigenic stimulation and inflammation induce SPTLC2 expression. Murine T cell-specific ablation of Sptlc2 fundamentally impairs antiviral T cell survival and effector function. Mechanistically, SPTLC2-deficiency reduces sphingolipid biosynthetic flux and causes a prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress and CD8+ T cell death. Antiviral CD8+ T cell responses are restored by supplementing sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Our study reveals that SPTLC2 underpins protective adaptive immunity by translating extracellular stimuli into intracellular anabolic signals and reducing cellular stress to maintain metabolic reprogramming sustainability Overall design: Triplicates of each group were used for RNA-seq. Four groups were studied: Wild-type and SPTLC2-deficient CD8+ T cells, harvested from either naïve mice (D0) or mice infected with LCMV Armstrong 8 days earlier (D8).
Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8<sup>+</sup> T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness.
Treatment, Subject
View Samples