Plants aquire nitrogen from the soil, most commonly in the form of either nitrate or ammonium. Unlike ammonium, nitrate must be reduced (with NADH and ferredoxin as electron donors) prior to assimilation. Thus, nitrate nutrition imposes a substantially greater energetic cost than ammonium nutrition. Our goal was to compare the transcriptomes of nitrate-supplied and ammonium-supplied plants, with a particular interest in characterizing the differences in redox metabolism elicited by different forms of inorganic nitrogen.
Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants.
Specimen part
View SamplesThe study tests the hypothesis that maternal mRNA translation in oocytes is sensitive to the environment in which the oocytes mature. Amphiregulin (AREG) is a critical signal for oocyte maturation but also for oocyte developmental competence. Here we have used a genome-wide approach to determine whether the oocyte translational program is affected when oocytes mature in vivo in the absence of AREG.
Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes.
Specimen part
View SamplesOrganoid techniques provide unique platforms to model brain development and neurological disorders. While organoids recapitulating corticogenesis were established, a system modeling human medial ganglionic eminence (MGE) development, a critical ventral brain domain producing cortical interneurons and related lineages, remains to be developed. Here, we describe a system to generate MGE or cortex-specific organoids from human pluripotent stem cells. These organoids recapitulate the developments of MGE and cortex domains respectively. Population and single-cell transcriptomic profiling revealed transcriptional dynamics and lineage productions during MGE and cortical organoids development. Chromatin accessibility landscapes were found to be involved in this process. Furthermore, MGE and cortical organoids generated physiologically functional neurons and neuronal networks. Finally, we applied fusion organoids as a model to investigate human interneuron migration. Together, our study provides a new platform for generating domain-specific brain organoids, for modeling human interneuron migration, and offers deeper insight into molecular dynamics during human brain development. Overall design: mRNA profiles of hMGEOs and hCOs were generated by deep sequencing
Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration.
Specimen part, Subject
View Samples