Dentatorubral-pallidoluysian Atrophy (DRPLA) is a human polyQ disease caused by the expansion of a CAG strech in the atrophin-1 (at-1) gene. In all vertebrates, a second atrophin gene (at-2) is present and it encodes a related protein void of polyQ tracks. In D.melanogaster there is one conserved Atrophin (Atro) gene, ubiquitously expressed, which contains all functional domains of vertebrate Atrophins, including two polyQ stretches. To understand to what extent transcriptional alterations cause neurodegeneration and are linked to the normal functions of Atrophin, we performed a genome wide transcriptional profiling in our Drosophila models, focusing on primary events that precede neurodegeneration.
Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat.
No sample metadata fields
View SamplesIt has been shown that tumor infiltrating immune cells have a profound impact on the outcome of FL. To find mechanisms whereby TILs are altered gene expession analysis of highly pure TILs were performed.
Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation.
Specimen part, Subject
View SamplesInterleukin-21 (IL-21) is a pleiotropic cytokine that induces expression of transcription factor BLIMP1 (encoded by Prdm1), which regulates plasma cell differentiation and T cell homeostasis. We identified an IL-21 response element downstream of Prdm1 that binds the transcription factors STAT3 and IRF4, which are required for optimal Prdm1 expression. Genome-wide ChIP-Seq mapping of STAT3- and IRF4-binding sites showed that most regions with IL-21-induced STAT3 binding also bound IRF4 in vivo, and furthermore, revealed that the noncanonical TTCnnnTAA GAS motif critical in Prdm1 was broadly used for STAT3 binding. Comparing genome-wide expression array data to binding sites revealed that most IL-21-regulated genes were associated with combined STAT3-IRF4 sites rather than pure STAT3 sites. Correspondingly, ChIP-Seq analysis of Irf4_/_ T cells showed greatly diminished STAT3 binding after IL-21 treatment, and Irf4_/_ mice showed impaired IL- 21-induced Tfh cell differentiation in vivo. These results reveal broad cooperative gene regulation by STAT3 and IRF4.
Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors.
Specimen part
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View SamplesHepatocellular carcinoma (HCC) is ranked second in cancer-associated deaths worldwide. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause of hepatic cirrhosis). It is a complex and heterogeneous tumor due to activation of multiple cellular pathways and molecular alterations.
Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesTranscriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP
Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.
Specimen part, Disease, Cell line
View SamplesIn a pilot experiment to reprogramme MEF into endoderm, we infected MEF with the Yamanakas factors (O: Oct4, K: Klf4, S: Sox2, M:Myc), FoxA2 (F) and Gata4 (G). Global gene expression of isolated clones was performed.
Gata4 blocks somatic cell reprogramming by directly repressing Nanog.
No sample metadata fields
View SamplesThe chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 over-expression plays an essential role in the development of mantle cell lymphoma (MCL), an aggressive tumor that remains incurable with current therapies. Cyclin-D1 has been postulated as an effective therapeutic target, but its evaluation has been hampered by our incomplete understanding of its oncogenic functions and by the lack of valid MCL murine models. To address these issues, we generated a cyclin-D1-driven mouse model whereby cyclin-D1 expression can be externally regulated. These mice developed lymphomas capable of recapitulating most features of human MCL. We found that cyclin-D1 inactivation was not sufficient to induce lymphoma regression in vivo. However, using a combination of in vitro and in vivo assays, we identified a novel pro-survival cyclin-D1 function in MCL cells. Specifically, we demonstrate that cyclin-D1 sequestrates the pro-apoptotic protein BAX, thereby favoring BCL2 anti-apoptotic function. Accordingly, cyclin-D1 inhibition sensitized the lymphoma cells to apoptosis through BAX release. Thus, genetic or pharmacologic targeting of cyclin-D1 combined with a pro-apoptotic BH3 mimetic synergistically killed murine lymphomas and human MCL cells. Our study identifies a novel role of cyclin-D1 in deregulating apoptosis and highlights the potential benefit of simultaneously targeting cyclin-D1 and survival pathways in patients with MCL.
A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma.
Specimen part, Cell line
View SamplesAnti-retroviral therapy (ART) has transformed human immunodeficiency virus (HIV) infection from a fatal illness to a chronic condition by controlling viral replication and restoring immune function. However, chronic T-cell activation can be observed in 20-35% of individuals on ART, resulting in an immune reconstitution inflammatory syndrome (IRIS) [1-3]. IRIS involving the CNS can result in permanent disability and death [4]. Tat is a viral protein produced in HIV-infected cells and released into the extracellular space [5]. We show that the secreted-Tat protein activated uninfected T-cells in an antigen-independent manner without inducing proliferation. Notably, Tat induced the secretion of IL-17 from T-cells and increased the percentage of T-cells with a Th17 phenotype. T-cell activation was independent of the T-cell receptor but dependent on endocytosis of Tat and activation of vascular endothelial growth factor receptor 2 (VEGFR2). Tat induced global changes in histone acetylation and increased HIV infection in non-replicating T-cells. Furthermore, in an individual with CNS IRIS, Tat expressing infiltrates and secretion of IL-17 was detected in the absence of viral replication in the brain. Thus Tat can induce T-cell activation in a paracrine and autocrine manner resulting in propagation of inflammation and increased virulence.
Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein.
Specimen part, Treatment, Time
View SamplesWe treated intestinal enteroids continuously for 6 days with or without TgfbR1/2 inhibitor (LY2109761) or Tgfb1 ligand
Single cell lineage tracing reveals a role for TgfβR2 in intestinal stem cell dynamics and differentiation.
Specimen part
View Samples