This SuperSeries is composed of the SubSeries listed below.
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesExperiment 1 - miR-155 and miR-199 Phenotype
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesExperiment 2 - MiRNA mimics have a length and passenger strand specific effect
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesMicroarray-based expression profiling of BRCA2 knockout and isogenic wild type HCT116 human colorectal cancer cells
Up-regulation of the interferon-related genes in BRCA2 knockout epithelial cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Master regulators of FGFR2 signalling and breast cancer risk.
Specimen part, Cell line
View SamplesGenome-wide association studies for breast cancer have identified over 80 different risk regions in the genome, with the FGFR2 locus consistently identified as the most strongly associated locus. However, we know little about the mechanisms by which the FGFR2 locus mediates risk or the pathways in which multiple risk loci may combine to cause disease. Here we use a systems biology approach to elucidate the regulatory networks operating in breast cancer and examine the role of FGFR2 in mediating risk. Using model systems we identify FGFR2-regulated genes and, combining variant set enrichment and eQTL analysis, show that these are preferentially linked to breast cancer risk loci. Our results support the concept that cancer-risk associated genes cluster in pathways
Master regulators of FGFR2 signalling and breast cancer risk.
Cell line
View SamplesGenome-wide association studies for breast cancer have identified over 80 different risk regions in the genome, with the FGFR2 locus consistently identified as the most strongly associated locus. However, we know little about the mechanisms by which the FGFR2 locus mediates risk or the pathways in which multiple risk loci may combine to cause disease. Here we use a systems biology approach to elucidate the regulatory networks operating in breast cancer and examine the role of FGFR2 in mediating risk. Using model systems we identify FGFR2-regulated genes and, combining variant set enrichment and eQTL analysis, show that these are preferentially linked to breast cancer risk loci. Our results support the concept that cancer-risk associated genes cluster in pathways
Master regulators of FGFR2 signalling and breast cancer risk.
Cell line
View SamplesGenome-wide association studies for breast cancer have identified over 80 different risk regions in the genome, with the FGFR2 locus consistently identified as the most strongly associated locus. However, we know little about the mechanisms by which the FGFR2 locus mediates risk or the pathways in which multiple risk loci may combine to cause disease. Here we use a systems biology approach to elucidate the regulatory networks operating in breast cancer and examine the role of FGFR2 in mediating risk. Using model systems we identify FGFR2-regulated genes and, combining variant set enrichment and eQTL analysis, show that these are preferentially linked to breast cancer risk loci. Our results support the concept that cancer-risk associated genes cluster in pathways
Master regulators of FGFR2 signalling and breast cancer risk.
Cell line
View SamplesGenome-wide association studies for breast cancer have identified over 80 different risk regions in the genome, with the FGFR2 locus consistently identified as the most strongly associated locus. However, we know little about the mechanisms by which the FGFR2 locus mediates risk or the pathways in which multiple risk loci may combine to cause disease. Here we use a systems biology approach to elucidate the regulatory networks operating in breast cancer and examine the role of FGFR2 in mediating risk. Using model systems we identify FGFR2-regulated genes and, combining variant set enrichment and eQTL analysis, show that these are preferentially linked to breast cancer risk loci. Our results support the concept that cancer-risk associated genes cluster in pathways
Master regulators of FGFR2 signalling and breast cancer risk.
Specimen part
View SamplesAnalysis of the response to arginine of the Escherichia coli K-12 transcriptome by microarray hybridization and real-time quantitative PCR provides a first coherent quantitative picture of the ArgR-mediated repression of arginine biosynthesis and uptake genes. Transcriptional repression was shown to be the major control mechanism of the biosynthetic genes, leaving only limited room for additional transcriptional or post-transcriptional regulations. The art genes coding for the specific arginine uptake system are subject to ArgR-mediated repression,
The arginine regulon of Escherichia coli: whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation.
No sample metadata fields
View Samples