The steroid hormone aldosterone plays a role in vascular function and disease. Aldosterone activates the mineralocorticoid receptor (MR), a ligand-activated transcription factor. MR have been found to be expressed in vascular cells and vessels.
Placental growth factor mediates aldosterone-dependent vascular injury in mice.
Sex, Specimen part
View SamplesBackground and aims: There are considerable evidences demonstrating that angiogenesis and chronic inflammation are mutually dependent. However, although cirrhosis progression is characterized with a chronic hepatic inflammatory process, this connection is not sufficiently explored as a therapeutic strategy. Therefore, this study was aimed to assess the potential benefits of targeting angiogenesis in cirrhotic livers to modulate inflammation and fibrosis. For this purpose, we evaluate the therapeutic utility of angiogenesis inhibitors. Methods: The in vivo effects of angiogenesis inhibitors were monitored in liver of cirrhotic rats by measuring angiogenesis, inflammatory infiltrate, fibrosis, a-smooth muscle actin (a-SMA) accumulation, differential gene expression (by microarrays), and portal pressure. Results: Cirrhosis progression was associated with a significant enhancement of vascular density and expression of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1, angiopoietin-2 and placental growth factor (PlGF) in cirrhotic livers. The newly formed hepatic vasculature expressed vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Interestingly, the expression of these adhesion molecules correlated well with local inflammatory infiltrate. Livers of cirrhotic rats treated with angiogenesis inhibitors presented a significant decrease in hepatic vascular density, inflammatory infiltrate, a-SMA abundance, collagen expression and portal pressure. Conclusion: Angiogenesis inhibitors may offer a potential novel therapy for cirrhosis due to its multiple mechanisms of action against angiogenesis, inflammation and fibrosis in cirrhotic livers.
Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats.
No sample metadata fields
View SamplesIxodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Early immunologic events at the tick-host interface.
Specimen part, Time
View SamplesPuberty unmasks or accelerates nephropathies, including the nephropathy of diabetes mellitus (DM). A number of cellular systems implicated in the kidney disease of DM interweave, forming an interdependent functional web. We performed focused microarray analysis to test the hypothesis that one or more genes in the transforming growth factor beta (TGF-) signaling system would be differentially regulated in male rats depending on the age of onset of DM.
Prepubertal onset of diabetes prevents expression of renal cortical connective tissue growth factor.
No sample metadata fields
View SamplesWe have used deep sequencing to explore the repertoire of both poly(A)+ and poly(A)- RNAs from two standard cell lines, HeLa cells and human embryonic stem cell (hESC) H9 cells. Overall design: Examination of nonpolyadenylated and polyadenylated in 2 cell types.
Genomewide characterization of non-polyadenylated RNAs.
Cell line, Subject
View SamplesWe have used deep sequencing to explore the repertoire of both poly(A)+ and poly(A)- RNAs from two standard cell lines, HeLa cells and human embryonic stem cell (hESC) H9 cells. Overall design: Examination of nonpolyadenylated and polyadenylated RNA in 2 cell types.
Genomewide characterization of non-polyadenylated RNAs.
No sample metadata fields
View SamplesTreatments that stimulate neuronal excitability enhance motor performance after stroke.cAMP-response-element binding protein (CREB) is a transcription factor that plays a key rolein neuronal excitability. Increasing the levels of CREB with a viral vector in a small pool ofmotor neurons enhances motor recovery after stroke, while blocking CREB signaling preventsstroke recovery. Silencing CREB-transfected neurons in the peri-infarct region with thehM4di-DREADD blocks motor recovery. Reversing this inhibition allows recovery to continue,demonstrating that it is possible to turn off and on stroke recovery by manipulating theactivity of CREB-transfected neurons. CREB transfection enhances re-mapping of injuredsomatosensory and motor circuits, and induces the formation of new connections withinthese circuits. CREB is a central molecular node in the circuit responses after stroke that leadto recovery from motor deficits.
CREB controls cortical circuit plasticity and functional recovery after stroke.
Specimen part
View SamplesUntreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.
Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.
Sex, Age, Specimen part, Disease, Disease stage, Race, Subject
View SamplesWe describe the discovery of sno-lncRNAs, a class of nuclear-enriched intron-derived long noncoding RNAs (lncRNAs) that are processed on both ends by the snoRNA machinery. During exonucleolytic trimming, the sequences between the snoRNAs are not degraded, leading to the accumulation of lncRNAs flanked by snoRNA sequences but lacking 5'' caps and 3'' poly(A) tails. Such RNAs are widely expressed in cells and tissues and can be produced by either box C/D or box H/ACA snoRNAs. Importantly, the genomic region encoding one abundant class of sno-lncRNAs (15q11-q13) is specifically deleted in Prader-Willi Syndrome (PWS). The PWS region sno-lncRNAs do not colocalize with nucleoli or Cajal bodies, but rather accumulate near their sites of synthesis. These sno-lncRNAs associate strongly with Fox family splicing regulators and alter patterns of splicing. These results thus implicate a previously unannotated class of lncRNAs in the molecular pathogenesis of PWS. Overall design: We have used deep sequencing to explore the gene expression from poly(A)+ RNAs in embryonal carcinoma (EC) line PA-1 cells treated with scrambled or specific antisense oligodeoxynucleotides (ASOs).
Long noncoding RNAs with snoRNA ends.
Specimen part, Cell line, Subject
View SamplesHypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation. Overall design: RNAseq of MCF7 cells grown under hypoxic and normoxic conditions. Submission includes data on 5 independent RNAseq experiments, each containing biological replicates grown under hypoxic conditions (0.5% oxygen), and under normoxic conditions.
Tumour hypoxia causes DNA hypermethylation by reducing TET activity.
Subject
View Samples