U2AF65 is an essential splicing factor involved in the 3'splice site recognition dureing the first steps of spliceosome assembly. In addition, this protein has nucleocytoplasmic shuttling activity and the Drosophila homologue has been implicated in mRNA export.
Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors.
No sample metadata fields
View SamplesPTB is multifunctional RNA binding protein reported to be involved in splicing, 3' -end processing, stability and translational regulation.
Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors.
No sample metadata fields
View SamplesNumerous long intervening non-coding RNA (lincRNA) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNA, their synthesis and turnover remain poorly characterised. Here we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal independent Pol II termination on lincRNA as compared to pre-mRNA. In addition, lincRNA are mostly restricted to chromatin where they are co-transcriptionally degraded by the RNA exosome. We also show that a lincRNA specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect functional lincRNA must escape from this targeted nuclear surveillance process. Overall design: We employed CTD phospho specific mNET-Seq with pla-B splicing inhibitor and RNA processing factors knockdown (DGCR8, Dicer1, EXOSC3 and CPSF73 proteins). mNET-seq experiments with 1% Empigen detergent treatment were performed to separate Pol II-associated complex from Pol II. We also analyzed subcellur RNA and pA+ and pA- nucleoplasm RNA libraries for RNA processing efficiency and the turnover. There are 4 raw files come from an illumina experiment (per sample), produced in 2 lanes. They were all mapped together.
Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs.
Cell line, Subject
View SamplesAberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. Overall design: RNA-seq of SETD2 mutant and wild-type ccRCC cell lines.
Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma.
No sample metadata fields
View SamplesThe steroid hormone aldosterone plays a role in vascular function and disease. Aldosterone activates the mineralocorticoid receptor (MR), a ligand-activated transcription factor. MR have been found to be expressed in vascular cells and vessels.
Placental growth factor mediates aldosterone-dependent vascular injury in mice.
Sex, Specimen part
View SamplesBackground and aims: There are considerable evidences demonstrating that angiogenesis and chronic inflammation are mutually dependent. However, although cirrhosis progression is characterized with a chronic hepatic inflammatory process, this connection is not sufficiently explored as a therapeutic strategy. Therefore, this study was aimed to assess the potential benefits of targeting angiogenesis in cirrhotic livers to modulate inflammation and fibrosis. For this purpose, we evaluate the therapeutic utility of angiogenesis inhibitors. Methods: The in vivo effects of angiogenesis inhibitors were monitored in liver of cirrhotic rats by measuring angiogenesis, inflammatory infiltrate, fibrosis, a-smooth muscle actin (a-SMA) accumulation, differential gene expression (by microarrays), and portal pressure. Results: Cirrhosis progression was associated with a significant enhancement of vascular density and expression of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1, angiopoietin-2 and placental growth factor (PlGF) in cirrhotic livers. The newly formed hepatic vasculature expressed vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Interestingly, the expression of these adhesion molecules correlated well with local inflammatory infiltrate. Livers of cirrhotic rats treated with angiogenesis inhibitors presented a significant decrease in hepatic vascular density, inflammatory infiltrate, a-SMA abundance, collagen expression and portal pressure. Conclusion: Angiogenesis inhibitors may offer a potential novel therapy for cirrhosis due to its multiple mechanisms of action against angiogenesis, inflammation and fibrosis in cirrhotic livers.
Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats.
No sample metadata fields
View SamplesMethods of reprogramming somatic cells to an induced pluripotent state (iPSC) have enabled the direct modeling of human disease and ultimately promise to revolutionize regenerative medicine. iPSCs offer an invaluable source of patient-specific pluripotent stem cells for disease modeling, drug screening, toxicology tests and importantly for regenerative medicine, and already have been employed to unmask novel insights into human diseases. While iPSCs can be consistently generated through overexpression of the four Yamanaka Factors OCT4, SOX2, KLF4 and c-MYC (OSKM), reprogrammed cells present worrisome differences with embryonic stem cells in transcriptional and epigenetic profiles, as well as developmental potential and difficulties in cell culturing. A thorough mechanistic understanding of the reprogramming process is critical to overcoming these barriers to the clinical use of iPSC. We have recently published a novel factor combination based on molecules specifically enriched in the metaphase II human oocyte. We have shown that just the overexpression of histone-remodeling chaperone ASF1A and OCT4 in hADFs previously exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells (AO9-iPSCs). Our study contributes to the understanding of the molecular pathways governing somatic cell reprogramming. Here we want to go deeper in the reprogramming mechanisms by understanding the importance of somatic cell origin, and analyzing (and establishing comparison with) the transcriptional and epigenetic characteristics of AO9-iPSCs. As the intrinsic histone chaperone activity of ASF1A and our data indicate, these cells could be closer to the embryonic pluripotent state, with less epigenetic memory, better culture properties and differentiation potential.
Analysis of Menstrual Blood Stromal Cells Reveals SOX15 Triggers Oocyte-Based Human Cell Reprogramming.
Sex, Specimen part, Subject
View SamplesOur lab established the M0505 cell line from the ovarian surface epithelium (OSE) of FVB/N mice in May 2005 in order to study OSE biology. This cell line spontaneously transformed into the spontaneously transformed OSE (STOSE) cell line in mid 2012.
A new spontaneously transformed syngeneic model of high-grade serous ovarian cancer with a tumor-initiating cell population.
Specimen part
View SamplesUntreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.
Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.
Sex, Age, Specimen part, Disease, Disease stage, Race, Subject
View SamplesLRRK2 mutations are the most common genetic cause of Parkinsons disease (PD). We performed a whole-genome RNA profiling of locus coeruleus post-mortem tissue from idiopathic PD (IPD) and LRRK2-associated PD patients. The differentially expressed genes found in IPD and LRRK2-associated PD were involved in the gene ontology terms of synaptic transmission and neuron projection. In addition, in the IPD group we found associated genes belonging to the immune system. Pathway analysis of the differentially expressed genes in IPD was related with neuroactive-ligand receptor interaction and with immune system pathways. Specifically, the analysis highlighted differential expression of genes located in the chromosome 6p21.3 belonging to the class II HLA. Our findings support the hypothesis of a potential role of neuroinflammation and the involvement of the HLA genetic area in IPD pathogenesis. Future studies are necessary to shed light on the relation of immune system related pathways in the etiopathogenesis of PD.
Brain transcriptomic profiling in idiopathic and LRRK2-associated Parkinson's disease.
Sex, Specimen part, Disease
View Samples