refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1223 results
Sort by

Filters

Technology

Platform

accession-icon GSE38690
The ERRalpha metabolic nuclear receptor controls growth of colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Estrogen-Related Receptor alpha (ERR) is a nuclear receptor that acts principally as a regulator of metabolism processes particularly in tissues subjected to high-energy demand. Besides its implication in energy metabolism and mitochondrial biogenesis, ERR was recently associated with tumorigenesis. Notably, increased expression of ERR was noted in different cancerous tissues as breast, ovary and colon. However, supplemental studies are required to better understand the role of ERR in colon carcinoma.

Publication Title

ERRα metabolic nuclear receptor controls growth of colon cancer cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE74276
Gene expression profiling of plasmacytoid dendritic cells from cutaneous lymph nodes
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Plasmacytoid dendritic cells wre isolated from cutaneous lymph nodes of control C57BL/6 mice and used for microarray analysis.

Publication Title

Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31727
the influence of a modification of the gut microbiota composition on the hepatic steatosis induced by n-3 polyunsaturated fatty acid (PUFA) depletion
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

in the present study, we evaluated whether microbiota modulation is able to restore hepatic steatosis induced by n-3 PUFA depletion in mice. For this purpose, mice were fed during three months with a n-3 PUFA-depleted diet (presenting a high n-6/n-3 PUFA ratio), and then supplemented with fructooligosaccharides (FOS, 0.25g/day/mice), a prebiotic, during the last ten days of the experiment (DEF/FOS). In the same time, some n-3 PUFA-depleted mice were returned on a control diet during the last 10 days of treatment (DEF/CT) to compare the effect of FOS supplementation to a restored intake in n-3 PUFA. Microarray analyses were performed to identify the molecular targets modified by FOS supplementation in the liver of n-3 PUFA depleted mice. These mice were compared to control mice (fed a control diet during the 112 days of experiment) and to n-3 PUFA-depleted mice (fed a n-3 PUFA-depleted diet during the 112 days of experiment) for which the results have been previously published (Pachikian B.D. et al. PLoS One. 2011;6(8):e23365, accession number GSE26986)

Publication Title

Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE12992
Beta-catenin status in pediatric medulloblastomas
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Medulloblastoma is the most frequent malignant pediatric brain tumor. Considerable efforts are dedicated to identify markers that help to refine treatment strategies. The activation of the Wnt/beta-catenin pathway occurs in 10-15% of medulloblastomas and has been recently described as a marker for favorable patient outcome. We report a series of 72 pediatric medulloblastomas evaluated for beta-catenin immunostaining, CTNNB1 mutations, and studied by comparative genomic hybridization. Gene expression profiles were also available in a subset of 40 cases. Immunostaining of beta-catenin showed extensive nuclear staining (>50% of the tumor cells) in 6 cases and focal nuclear staining (<10% of cells) in 3 cases. The other cases exhibited either a signal strictly limited to the cytoplasm (58 cases) or were negative (5 cases). CTNNB1 mutations were detected in all beta-catenin extensively nucleopositive cases. The expression profiles of these cases documented a strong activation of the Wnt/beta-catenin pathway. Remarkably, 5 out of these 6 tumors showed a complete loss of chromosome 6. In contrast, cases with focal nuclear beta-catenin staining, as well as tumors with negative or cytoplasmic staining, never demonstrated CTNNB1 mutation, Wnt/beta-catenin pathway activation or chromosome 6 loss. Patients with extensive nuclear staining were significantly older at diagnosis and were in continuous complete remission after a mean follow-up of 75.7 months (range 27.5-121.2) from diagnosis. All three patients with a focal nuclear staining of beta-catenin died within 36 months from diagnosis. Altogether, these data confirm and extend previous observations that CTNNB1-mutated tumors represent a distinct molecular subgroup of medulloblastomas with favorable outcome, indicating that therapy de-escalation should be considered. Yet, international consensus on the definition criteria of this distinct medulloblastoma subgroup should be achieved.

Publication Title

Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP186417
Intracellular Zn2+ transients modulate global gene expression in dissociated rat hippocampal neurons
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Zinc (Zn2+) is an integral component of many proteins and has been shown to act in a regulatory capacity in different mammalian systems, including as a neurotransmitter in neurons throughout the brain. While Zn2+ plays an important role in modulating neuronal potentiation and synaptic plasticity, little is known about the signaling mechanisms of this regulation. In dissociated rat hippocampal neuron cultures, we used fluorescent Zn2+ sensors to rigorously define resting Zn2+ levels and stimulation-dependent intracellular Zn2+ dynamics, and we performed RNA-Seq to characterize Zn2+-dependent transcriptional effects upon stimulation. We found that relatively small changes in cytosolic Zn2+ during stimulation altered expression levels of 931 genes, and these Zn2+ dynamics induced transcription of many genes implicated in neurite expansion and synaptic growth. Additionally, while we were unable to verify the presence of synaptic Zn2+ in these cultures, we did detect the synaptic vesicle Zn2+ transporter ZnT3 and found it to be substantially upregulated by cytosolic Zn2+ increases. These results provide the first global sequencing-based examination of Zn2+-dependent changes in transcription and identify genes that may mediate Zn2+-dependent processes and functions. Overall design: 3 replicates of each of 3 conditions (KCl treatment, KCl/Zn treatment, KCl/TPA treatment), none of which are control conditions. KCl treatment was used as the reference condition for all comparisons. TPA = tris(2-pyridylmethyl)amine, a Zn2+ chelator.

Publication Title

Intracellular Zn<sup>2+</sup> transients modulate global gene expression in dissociated rat hippocampal neurons.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE26986
The consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In the present study, we investigated the consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice fed during three months with a diet presenting a high n-6/n-3 PUFA ratio to induce n-3 PUFA depletion. Microarray analyses were performed to identify the molecular targets involved in the development of hepatic steatosis associated with n-3 PUFA depletion.

Publication Title

Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP063567
Complementarity and redundancy of IL-22-producing innate lymphoid cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Homeostasis of the gut microbiota is pivotal to the survival of the host. Intestinal T cells and Innate Lymphoid cells (ILCs) control the composition of the microbiota and respond to its perturbations. Interleukin 22 (IL-22) plays a pivotal role in the immune control of gut commensal and pathogenic bacteria and is secreted by a heterogeneous population of intestinal T cells, NCR- ILC3 and NCR+ILC3. Expression of NCR by ILC3 is believed to define an irreversible effector ILC3 end-state fate in which these cells are key to control of bacterial infection via their production of IL-22. Here we identify the core transcriptional signature that drives the differentiation of NCR- ILC3 into NCR+ ILC3 and reveal that NCR+ILC3 exhibit more plasticity than originally thought, as NCR+ ILC3 can revert to NCR- ILC3. Contrary to the prevailing understanding of NCR+ ILC3 genesis and function, in vivo analyses of mice conditionally deleted of the key ILC3 genes Stat3, Il22, Tbet and Mcl1 demonstrated that NCR+ ILC3 were not essential for the control of colonic infections in the presence of T cells. However, NCR+ ILC3 were mandatory for homeostasis of the caecum. Our data identify that the interplay of intestinal T cells and ILC3 results in robust complementary fail-safe mechanisms that ensure gut homeostasis. Overall design: Transcriptional profiling of wild-type and T-bet knockout innate lymphoid cells (ILC3) using RNA sequencing

Publication Title

Complementarity and redundancy of IL-22-producing innate lymphoid cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE56907
Mutations in the microtubule-associated protein Eml1 lead to ectopic progenitors and heterotopia formation during cortical development in mouse and human
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Neuronal migration disorders such as lissencephaly and subcortical band heterotopia (SBH) are associated with epilepsy and intellectual disability. Doublecortin (DCX), LIS1 and alpha1-tubulin (TUBA1A), are mutated in these disorders, however corresponding mouse mutants do not show heterotopic neurons in the neocortex. On the other hand, the spontaneously arisen HeCo mouse mutant displays this phenotype. The study of this model reveals novel mechanisms of heterotopia formation. While, HeCo neurons migrate at the same speed as WT, abnormally distributed dividing progenitors were found throughout the cortical wall from E13. Through genetic studies we identified Eml1 as the mutant gene in HeCo mice. No full length transcripts of Eml1 were identified due to a retrotransposon insertion in an intron. Re-expression of Eml1, coding for a microtubule-associated protein, rescues the HeCo progenitor phenotype. We further show that EML1 is mutated in giant ribbon-like heterotopia in human. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human.

Publication Title

Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54336
Expression data of A2EN cells during early stage of Chlamydia trachomatis infection
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Chlamydia trachomatis is an obligate intracellular pathogen that causes trachoma and sextually transmitted disease in human. During early stage of infection, Chlamydia secreted bacterial effector proteins into host cell cytoplasm to help its entry and estabilishment of early replicated niche.

Publication Title

The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE71171
Broad and largely overlapping molecular changes arise in thymic and peripheral XCR1+ dendritic cells upon tolerogenic and immunogenic maturation
  • organism-icon Mus musculus
  • sample-icon 67 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact