p63 is critical for epithelial development yet little is known about the transcriptional programmes it regulates. The p63 transactivating (TA) isoforms contain an amino-terminal exon that encodes a p53-like transactivation domain, whereas N-isoforms lack this domain but contain the common DNA binding domain (DBD), suggesting that TAp63 and Np63 isoforms may have opposing functions. By characterising transcriptional changes and cellular effects following modulation of p63 expression, we have defined a vital role for p63 in cellular adhesion. Knockdown of p63 expression caused downregulation of cell adhesion-associated genes, cell detachment and anoikis in mammary epithelial cells and keratinocytes. Conversely, overexpression of the TAp63 or Np63 isoforms of p63 upregulated cell adhesion molecules, increased cellular adhesion and conferred resistance to anoikis.
p63 regulates an adhesion programme and cell survival in epithelial cells.
Cell line
View SamplesWe used microarrays to unveil the gene expression alterations upon short-term HFD administration
Dietary alterations modulate susceptibility to Plasmodium infection.
Specimen part
View SamplesMM1.S cells stably transduced with control or b-catenin shRNA were established. Total RNA was isolated from 5x 10^6 cells of each in triplicate.
Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression.
Cell line
View SamplesInflorescence stages 1 to 12 from mutants involved in Arabidopsis small RNA metabolism. Three biological replicates of each mutant comprising at least 9 independent plants were harvested, and the expression profiles were determined using Affymetrix ATH1 arrays. Comparisons among the sample groups allow the identification of genes regulated by small RNAs (microRNAs and siRNAs).
microRNA-directed phasing during trans-acting siRNA biogenesis in plants.
No sample metadata fields
View SamplesIn an accompanying paper we found specific localization of diabetogenic T cells only to islets of Langerhans bearing the specific antigen. Instrumental in the specific localization was the presence of intra-islet dendritic cells bearing the -cell-peptide-MHC complex. Here we report that the entry of diabetogenic CD4 T cells very rapidly triggered inflammatory gene expression changes in islets and vessels by up-regulating chemokines and adhesion molecules. VCAM-1 expression was notable in blood vessels and so was ICAM-1. ICAM-1 was also found on -cells. These expression changes induced the entry of non-specific T cells that otherwise did not localize to the islets. In contrast to the entry of diabetogenic CD4 T cells, the entrance of non-specific T cells required a chemokine response and VCAM-1 expression by the islets. Interferon-gamma was important for the early gene expression changes in the islets. By microarray analysis we detected up-regulation of a group of interferon-inducible genes as early as 8 hours post T cell transfer. These studies provide a baseline to examine the development of therapeutics that can modulate islet localization of diabetogenic T cells to control this autoimmune disease.
Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response.
Specimen part
View SamplesType 1 diabetes (T1D) is an autoimmune disease triggered by T cell reactivity to protein antigens produced by the -cells. Here we present a chronological compendium of transcriptional profiles from islets of Langerhans isolated from non-obese diabetic (NOD) mice ranging from 2 wks up to diabetes and compared to controls. Parallel analysis was made of cellular components of the islets. Myeloid cells populated the islets early during development in all mouse strains. This was followed by a type I interferon signature detectable at 4-6 wks of age only in diabetes susceptible mice. Concurrently, CD4 T cells were found within islets, many in contact with intra-islet antigen presenting cells. Early cellular signs of islet reactivity were detected by six wks. By 8 wks, NOD islets contained all major leukocytes populations and an inflammatory gene signature. This work establishes the natural transcriptional signature of T1D and provides a resource for future research.
Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse.
Specimen part
View SamplesThis GEO submission includes RNAseq raw data (fastq) and processed data (using ASpli 1.6.0) from samples obtained in the wild type and the single prefoldin4 and lsm8 mutants in three different environmental conditions as well as in the triple prefoldin2 prefoldin4 prefoldin6 mutant growth in standard conditions. Overall design: 28 biological samples from 10 different conditions and genopypes, including the Col-0 WT in each condition (standard, cold and salt conditions)
Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis.
Specimen part, Subject
View SamplesUntreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.
Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.
Sex, Age, Specimen part, Disease, Disease stage, Race, Subject
View SamplesNumerous studies have shown the potential of spermatozoal RNAs to delineate failures of spermatogenic pathways in infertile samples. However, the RNA contribution of normal fertile samples still needs to be established in relation to transcripts consistently present in human spermatozoa. We report here the spermatozoal transcript profiles characteristic of 24 normally fertile individuals. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Illumina Human-8 BeadChip Microarrays
Identification of human sperm transcripts as candidate markers of male fertility.
No sample metadata fields
View SamplesNOD mice deficient in the transcription factor Batf3 never develop diabetes. The goal of this study was to determine if NOD.Batf3-/- mice islets had any inflammatory signature associated with type 1 diabetes. Islets of Langerhans were isolated from NOD, NOD.Batf3-/-, and NOD.Rag1-/- and then compared to determine inflammatory gene profiles. At 6 and 8 weeks of age, NOD.Batf3-/- islets had an absence of inflammatory gene expression and were almost identical to uninflamed NOD.Rag1-/- islets. This work shows that absence of the Batf3 transcription factor is sufficient to prevent all the inflammatory sequelae of autoimmune diabetes.
A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes.
Sex, Specimen part
View Samples