The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (Doublecortin-like kinase 3) which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington''s disease. Recent data obtained in studies related to cancer suggest DCLK3 could have anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington''s disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington''s disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodeling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including TADA3, a core component of SAGA complex. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodeling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration. Examination of DCLK3 as neuroprotector against mutant huntingtin in vivo and in vitro models. Overall design: Examination of DCLK3 as neuroprotector against mutant huntingtin in vitro experiments.
The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin.
Specimen part, Cell line, Subject
View SamplesThe systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. Additionally, 373 tumors were assayed for copy number alterations via Agilent 244A CGH arrays and 153 breast, lung, and colon samples were assayed for mRNA abundance with Affymetrix HuEx1 Exon Arrays.
Diverse somatic mutation patterns and pathway alterations in human cancers.
Specimen part
View SamplesWe sought to determine the genes regulated by the Drosophila Hox protein AbdA in a homogenous cell system. S2-DRSC cells that have no Hox expression were stably transfected with HA-tagged AbdA under the control of a metallothionein promoter. Overall design: S2-DRSC cells are stably transfected with HA-tagged AbdA (S2-DRSC:AbdA). S2 and S2-AbdA cells are analysed for gene expression in the absence (S2-DRSC) and presence (S2-DRSC-HA::AbdA) of AbdA
Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation.
Cell line, Treatment, Subject
View SamplesThe aim of the study was to investigate gene expression profiles of post-menopausal women receiving Premarin estrogen replacement therapy (ERT), compared to controls and to examine any correlations between the bacterial vaginosis (BV) status of the stubjects.
Effect of bacterial vaginosis, Lactobacillus and Premarin estrogen replacement therapy on vaginal gene expression changes.
Treatment
View SamplesClassical dendritic cells (DCs) are key players at the interface between innate and adaptive immunity. In the kidney exist 2 major subsets of cDCs: CD11b+ cDCs and CD103+ cDCs. We investigated their function in the most widely used model of experimental glomerulonephritis (GN) in mice: nephrotoxic nephritis (NTN). Consistent with a role for cDCs in nephrotoxic nephritis, depletion of ZBTB46+ cells (all cDCs) attenuated kidney injury, while deficiency of the CD103+ subset of cDCs accelerated injury via a mechanism that involved increased neutrophils. This RNAseq was performed to analyze transcriptional changes in FACS-sorted renal CD11b+ and CD103+ cDCs under healthy conditions and at day 7 of NTN to reveal why both subsets have different functions in GN. Overall design: The study was performed with total of 6 mice (wildtype, male, age 8-12 weeks). 3 mice were sacrificed in the healthy situation, 3 mice were sacrificed 7 days after injection of the nephrotoxic nephritis antiserum (NTN). From each mouse CD11b+ and CD103+ DCs were sorted, resulting in 4 experimental conditions with 3 biological replicates each: CD103_healthy, CD11b_healthy, CD103_NTN, CD11b_NTN.
Opposing Roles of Dendritic Cell Subsets in Experimental GN.
Sex, Specimen part, Treatment, Subject
View SamplesResveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg-1 day-1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles.
A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice.
No sample metadata fields
View SamplesIgE plays an essential role in the pathogenesis of allergies and its production is strongly regulated. A transient IgE germinal center phase and lack of IgE memory cells limit the generation of pathogenic IgE, but this can be overcome by sequential switching of IgG1 cells to IgE. We investigated which population of IgG1 cells can give rise to IgE-producing cells in memory responses. We identified three populations of IgG1 memory B cells (DP:CD73+CD80+, SP:CD73-CD80+, DN:CD73-CD80-) that generate IgE plasma cells of high or low affinity, but none gives rise to IgE germinal center cells or IgE memory cells. The two memory IgG1 populations differ however in their ability to differentiate into IgG1 plasma cells and germinal center cells, and to expand the IgG1 memory B cell pool. To explore the molecular mechanisms that may explain the distinct functions of IgG1 memory B cell subsets we compared their expression by transcriptome analysis using next generation sequencing. Overall design: mRNA profiles of quadruplicates of double positive (DP:CD73+CD80+), single positive (SP:CD73-CD80+), double negative (DN:CD73-CD80-) IgG1 memory B cells along with IgG1 germinal center (GC) cells and naïve B cells were generated using Illumina high throughput sequencing.
IgG1 memory B cells keep the memory of IgE responses.
Specimen part, Cell line, Subject
View SamplesExpression profile of FLA2 (highest LSC frequency) and FLB1 (lowest LSC frequency) leukemias.
A role for GPx3 in activity of normal and leukemia stem cells.
Specimen part
View SamplesUsing wild-type and Rps5 heterozygous embryonic stem cells, we isolated RNA from polyribosomal fractions in order to get insights into transcriptional and translational defects of such deletion. Overall design: Input, monosomes and polysomes extracted RNA samples from wild-type and Rps5 heterozygous clones (undifferentiated and differentiated, total number of samples = 12), were subjected to sequencing.
Haploinsufficiency screen highlights two distinct groups of ribosomal protein genes essential for embryonic stem cell fate.
No sample metadata fields
View SamplesAcute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups. Overall design: Total healthy bone marrow was sorted to isolate distinct cell populations. RNA-Seq analysis was performed on sorted cells to determine gene expression profile of healthy bona marrow subpopulations.
Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets.
Specimen part, Subject
View Samples