Twenty-one genes (27 probe sets) were up-regulated in CAF, as compared with NF. Known functions of these genes relate to paracrine or intracellular signaling, transcriptional regulation, extracellular matrix and cell adhesion/migration. Ten genes (14 probe sets) were down-regulated in CAF, including the pluripotency transcription factor KLF4. Quantitative RTPCR analysis of 10 genes validated the array results. Immunohistochemical staining for three gene products confirmed stromal expression in terms of location and relative quantity. Surprisingly, the variability of gene expression was slightly higher in NF than in CAF, suggesting inter-individual heterogeneity of normal stroma.
Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast.
Specimen part
View SamplesMessenger RNA is thought to predominantly reside in the cytoplasm, where it is translated and eventually degraded. Although nuclear retention of mRNA has a regulatory potential it is considered extremely rare in mammals. Here to explore the extent of mRNA retention in metabolic tissues we combine deep sequencing of nuclear and cytoplasmic RNA fractions with single molecule transcript imaging in mouse beta cells, liver and gut. We identify a wide range of protein coding genes for which the levels of spliced polyadenylated mRNA are higher in the nucleus than in the cytoplasm. These include genes such as the transcription factor ChREBP, Nlrp6, Glucokinase and Glucagon receptor. We demonstrate that nuclear retention of mRNA can efficiently buffer cytoplasmic transcript levels from noise that emanates from transcriptional bursts. Our study challenges the view that transcripts predominantly reside in the cytoplasm and reveals a role of the nucleus in dampening gene expression noise. Overall design: we have total of 8 samples all are mice. liver nuclear RNA (2 replicates), liver cytoplasmic RNA (2 replicates), MIN6 (cell line) nuclear RNA (2 replicates), MIN6 (cell line) cytoplasmic RNA (2 replicates)
Nuclear Retention of mRNA in Mammalian Tissues.
Specimen part, Cell line, Subject
View SamplesWe report the first RNA-Seq experiments profiling the effects of DEK loss in HNSCC. Our data also incorporates HPV+ and HPV- tumors to idenfity HPV-dependent and -independent gene signatures. Overall design: RNA-Seq of DEK-dependent gene signatures in HNSCC cell lines
IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival.
No sample metadata fields
View SamplesHeat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.
Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.
Specimen part
View SamplesRecent reports have proposed a new paradigm for obtaining mature somatic cell types from fibroblasts without going through a pluripotent state, by briefly expressing canonical iPSC reprogramming factors Oct4, Sox2, Klf4 and c-Myc (abbreviated as OSKM), in cells expanded in lineage differentiation promoting conditions. Here we apply genetic lineage tracing for endogenous Nanog, Oct4 and X chromosome reactivation during OSKM induced trans-differentiation, as these molecular events mark final stages for acquisition of induced pluripotency. Remarkably, the vast majority of reprogrammed cardiomyocytes or neural stem cells derived from mouse fibroblasts via OSKM mediated trans-differentiation were attained after transient acquisition of pluripotency, and followed by rapid differentiation. Our findings underscore a molecular and functional coupling between inducing pluripotency and obtaining “trans-differentiated” somatic cells via OSKM induction, and have implications on defining molecular trajectories assumed during different cell reprogramming methods. Overall design: poly RNA-Seq was measured before, during and after conversion of mouse embryonic fibroblasts to neural stem cells using OSKM trans-differentiation method.
Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.
No sample metadata fields
View SamplesWhen assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms'' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1+CD133- marks SIX2+ multipotent renal stem cells transiting to NCAM1+CD133+ differentiating segment-specific SIX2- epithelial progenitors and NCAM1-CD133+ differentiated nephron cells. In tumorigenesis, NCAM1+CD133- marks SIX2+ blastema that includes the ALDH1+ WT cancer stem/initiating cells, while NCAM1+CD133+ and NCAM1-CD133+ specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1+ nephron stem cells in normal and malignant nephrogenesis. Overall design: Human fetal kidney mRNA profiles of 3 cell populations (NCAM1+/CD133-, NCAM+/CD133+, NCAM-/CD133+) were generated by deep sequencing using Illumina HiSeq.
Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.
No sample metadata fields
View SamplesCancer stem cell (CSC) identification relies on transplantation assays of cell sub-populations sorted from fresh tumor samples. Herein, we attempt to bypass limitations of abundant tumor source and predetermined immune selection by in-vivo propagating patient derived xenografts (PDX) from human malignant rhabdoid tumor (MRT), a rare and lethal pediatric neoplasm, to an advanced state in which most cells behave as CSCs. Stemness is then probed by comparative transcriptomics of serial PDXs generating a gene signature of EMT, invasion/motility, metastasis and self-renewal, pinpointing putative MRT CSC markers. The relevance of these putative CSC molecules is analyzed by sorting tumorigenic fractions from early-passaged PDX according to one such molecule, deciphering expression in archived primary tumors and testing the effects of CSC molecule inhibition on MRT growth. Using this platform, we identify ALDH1 and lysyl oxidase (LOX) as relevant targets and provide a larger framework for target and drug discovery in rare pediatric cancers. Overall design: Tumorigenic fractions from early-passaged PDX
In Vivo Expansion of Cancer Stemness Affords Novel Cancer Stem Cell Targets: Malignant Rhabdoid Tumor as an Example.
Subject
View SamplesMicroarray was used to identify differential gene expression pattern in Barrett's esophagus (BE), compared to the normal adjacent epithelia gastric cardia (GC) and normal squamous esophagus (NE)
Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus.
Specimen part
View SamplesUV-B radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibits maize leaf growth without causing any other visible stress symptoms, including accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth is a consequence of a reduction in cell production, and a shortened growth zone (GZ) in UV-B irradiated leaves. To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including Growth Regulating Factors (GRFs) and transcripts for proteins participating in different hormone pathways. Overall design: Factorial design with two factors: Treatment (control vs UV-B) x Zone I (0-1cm from base of the leaf), 2 (1-2cm from base of the leaf) and 3 (2-3cm from base of the leaf), 3 replicates
UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels.
Specimen part, Subject
View SamplesCerebellum from post-natal day 11 L1 knockout mice on the 129Sv background were compared to wild type littermates. The original goal of the study was to determine if there was compensation from other L1 family members or alterations in cell survival or apoptosis. Interestingly no major changes were detected in those families or pathways.
A modifier locus on chromosome 5 contributes to L1 cell adhesion molecule X-linked hydrocephalus in mice.
Sex
View Samples