refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 580 results
Sort by

Filters

Technology

Platform

accession-icon GSE56897
The transcription factor GATA6 allows self-renewal of colon adenoma stem cells by repressing BMP gene expression
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56895
Identification of GATA6 target genes in LS174T colorectal cancer cells using gene expression arrays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant activation of WNT signaling and loss of BMP signals represent the two main alterations leading to the initiation of colorectal cancer (CRC). Here we screen for genes required for maintaining the tumor stem cell phenotype and identify the zinc-finger transcription factor GATA6 as key regulator of the WNT and BMP pathways in CRC. GATA6 directly drives the expression of LGR5 in adenoma stem cells while it restricts BMP signaling to differentiated tumor cells. Genetic deletion of Gata6 in mouse colon adenomas increases the levels of BMP factors, which signal to block self-renewal of tumor stem cells. In human tumors, GATA6 competes with beta-catenin/TCF4 for binding to a distal regulatory region of the BMP4 locus that has been previously linked to increased susceptibility to develop CRC. Hence, GATA6 creates a permissive environment for tumor stem cell expansion by controlling the major signaling pathways that influence CRC initiation.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56896
Identification of beta-cetenin/TCF4 target genes in LS174T colorectal cancer cells using gene expression arrays
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant activation of WNT signaling and loss of BMP signals represent the two main alterations leading to the initiation of colorectal cancer (CRC). Here we screen for genes required for maintaining the tumor stem cell phenotype and identify the zinc-finger transcription factor GATA6 as key regulator of the WNT and BMP pathways in CRC. GATA6 directly drives the expression of LGR5 in adenoma stem cells while it restricts BMP signaling to differentiated tumor cells. Genetic deletion of Gata6 in mouse colon adenomas increases the levels of BMP factors, which signal to block self-renewal of tumor stem cells. In human tumors, GATA6 competes with beta-catenin/TCF4 for binding to a distal regulatory region of the BMP4 locus that has been previously linked to increased susceptibility to develop CRC. Hence, GATA6 creates a permissive environment for tumor stem cell expansion by controlling the major signaling pathways that influence CRC initiation.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE44053
Identification of heat stress-targets of translational control by large scale analysis of Arabidopsis trancriptome and translatome.
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Heat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.

Publication Title

Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47778
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage
  • organism-icon Caenorhabditis elegans
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51162
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, daf-2, daf-16, daf-2;daf-16]
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51161
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, xpa-1]
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE26334
Expression data from LoVo colon cancer lines +/- constitutive LIN28B expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We sought to elucidate the molecular mechanisms whereby LIN28B functions by comparing the gene expression profile of cells constitutively expressing LIN28B to empty vector controls.

Publication Title

LIN28B promotes colon cancer progression and metastasis.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE51467
Expresion profile of TGR-1 (Myc+/+) and HO15.19 (Myc-/-) infected with a retrovirus expressing Hhex or GFP (controls)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

The aim of this experiment is to determine Hhex targets in the presence and absence of Myc.

Publication Title

Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE66646
Expression data from ethanol and saline exposed mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact