Cell purification technology combined with whole transcriptome sequencing and small molecule agonist of hematopoietic stem cell self-renewal has allowed us to identify the endothelial protein c receptor protein (EPCR) as a surface maker that defines a rare subpopulation of human cells which is highly enriched for stem cell activity in vivo. EPCR-positive cells exhibit a robust multi-lineage differentiation potential and serial reconstitution in immunocompromised mice. In culture, most if not all of the HSC activity is detected in the EPCR+ subset, arguing for the stability of this marker on the surface of cultured cells, a feature not found with more recently described markers such as CD49f. Functionally EPCR is essential for human HSC activity in vivo. Cells engineered to express low EPCR expression proliferate normally in culture but lack the ability to confer long-term reconstitution. EPCR is thus a stable marker for human HSC. Its exploitation should open new possibilities in our effort to understand the molecular bases behind HSC self-renewal. Overall design: Examining 3 cellular subsets: EPCR+, EPCRlow, EPCR- derived form CD34+CD45RA- cord blood cells after 7 day expansion in UM171
EPCR expression marks UM171-expanded CD34<sup>+</sup> cord blood stem cells.
No sample metadata fields
View SamplesRNASeq data for mPB or CB-derived CD34+ exposed to UM171 Overall design: human mobilized peripheral blood or cord blood-derived CD34(+) cells were cultured for 16 hours with vehicle (DMSO), dose response of UM171 [11.9nM, 19nM, 30.5nM, 48.8nM, 78.1nM and 125nM], SR1 [500nM] and combination of( UM171 [48.8nM]+SR1 [500nM])
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal.
No sample metadata fields
View SamplesExpression profile of FLA2 (highest LSC frequency) and FLB1 (lowest LSC frequency) leukemias.
A role for GPx3 in activity of normal and leukemia stem cells.
Specimen part
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesAlternative splicing is a mechanism for increasing the protein variety of a limited number of genes. Studies have shown that aberrant regulations of the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4ß-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana, and analyzed its biological effects in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of apoptotic genes (e.g., HIPK3, SMAC/DIABLO, and SURVIVIN), changes the expression level of splicing factors (e.g., hnRNP C1/C2, ASF/SF2, SRp20, and SRp55), and induces histone tail posttranslational modifications (e.g., H3K27me1, H3K27me2, H3K36me3, and H3K79me1). Pretreatment with okadaic acid to inhibit protein phosphatase-1 could partly relieve the effects of 4bHWE on the alternative splicing of HIPK3 and SMAC/DIABLO transcripts, as well as on the dephosphorylation of ASF/SF2. Genome-wide detection of alternative splicing further indicated that several other apoptosis-related genes are also regulated by 4bHWE, including APAF1, CARP-1, and RIPK1. Moreover, we extended our study to apoptosis-associated molecules, detecting an increasing level of CASPASE-3 activity and cleavage of poly ADP-ribose polymerase in 4bHWE-induced apoptosis. Furthermore, in vivo experiments showed that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease of tumor size and weight. Taken together, this study is the first to show that 4bHWE affects alternative splicing through the modulations of splicing factors, providing a novel view of the antitumor mechanism of 4bHWE. Overall design: Examination of the global genes with altered alternative splicing in 4bHWE-treated Huh-7 cells.
4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.
Specimen part, Treatment, Subject
View SamplesExpression profiling of a panel of 101 adult male germ cell tumors and 5 normal testis specimens was performed on Affymetrix U133A and U133B microarrays. This data has been used to:
Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors.
No sample metadata fields
View SamplesThe study demontrates differences in the transcriptome ( both of protein coding transcripts and long non-coding RNAs) in the unilateral ureteric obstruction model of renal fibrosis. Overall design: Renal tissue was studied from animals undergoing sham operation (as controls) or right ureteric ligation. Animals were sacrificed 2 and 8 days following ligation and the right kidney tissue was examined.
Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
Sex, Age, Specimen part, Cell line, Subject
View SamplesWe demonstrate that GLUT4 up-regulation significantly increased cell migration and invasion in lower magligance head and neck cancer cell lines in vitro.
Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression.
Specimen part, Disease, Disease stage, Cell line
View SamplesThis study investigates the molecular signatures that drive Renal Cell Carcinoma (RCC) metastatic conversion using the 16 paired Human tumor samples.
Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression.
Specimen part, Disease
View Samples