The Ets family transcription factor PU.1 is essential for the development and maintenance of several hematopoietic lineages. In the thymus, PU.1 is expressed only in the early ETP/DN1, DN2a and DN2b stages of development. While PU.1 deletion in multipotent precursors leads to a complete block in T-cell development its function in the intrathymic stages in which it is expressed remains undetermined. The goal of this expression profiling study was to determine if PU.1 regulates the expression of T-lineage genes during the early stages of development. To do this, we generated the PU.1-Eng construct which expresses a fusion protein containing the DNA binding ETS domain of PU.1 (aas 159-260) fused to the obligate repressor domain (aas 1-298) of the Drosophila engrailed protein. The PU.1-ETS construct only expresses the ETS domain of PU.1 (aas 159-260) and serves as a control. Fetal liver precursors were isolated from e14.5 embryos and co-cultured with OP9-DL1 cells in the presence of IL-7 and Flt3L (5 ng/ml each) for 4 days to obtain FLDN1, DN2a and DN2b cells. These were infected with vector only, PU.1-ETS and the PU.1-Eng constructs and DN2 cells were sorted after 20 hours of infection. Total RNA was isolated from these cells and polyA+ fraction was used to prepare libraries for high throughput sequencing. Libraries prepared from 2 independent sets of samples were subjected to non-strand specific single-end sequencing. Overall design: Two sets of samples generated from fetal liver precursor derived DN2 cells expressing PU.1-ETS and PU.1-Eng constructs were used for expression profiling. The LZRS retroviral vector, without any insert, was used to generate the vector control dataset.
Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1.
No sample metadata fields
View SamplesThe purpose of the study was to determine what genes in DN2 pro-T cells are immediately regulated by the transcription factor GATA-3, either as activation targets or as repression targets. To do this, two pairs of Gata3-floxed and control pro-T cells were generated and analyzed by RNA-seq within the first day of deletion of the Gata3 gene. Pro-T cells were generated by differentiation in vitro on OP9-DL1 monolayers of fetal liver-derive precursors from wildtype or Gata3-floxed mice, and the Gata3 gene was acutely deleted by transduction with Cre retroviral vector. Within 20 hr after transduction, samples of acutely Gata3-deleted and control DN2 cells were sorted and RNA prepared for RNA-seq analysis. High-throughput sequencing of the samples was carried out. Experimental Gata3 deleted samples in both cases were Gata3-floxed, ROSA26R-EYFP samples infected with Cre retrovirus and sorted for EYFP+ (Cre-activated) DN2 phenotype. Control for experiment 1: wildtype (C57BL/6) DN2 pro-T cells generated in parallel, also treated with Cre retrovirus but sorted only for DN2 phenotype. Control for experiment 2: same genotype as experimental, but infected with a GFP+ empty retroviral vector and sorted for GFP+ DN2 phenotype. Overall design: Two pairs of RNA-seq samples of DN2 pro-T cells were generated for comparison, each pair consisting of a Gata3-deleted sample plus a stage-matched control.
GATA-3 dose-dependent checkpoints in early T cell commitment.
No sample metadata fields
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesThe transcriptome analysis was performed in triplicate using two human embryonic stem cells lines (hES_VUB01 and hES_SA01) by comparing the expression profiles of the undifferentiated hES cells and two types of progenitors derived from the hES cell lines: Neural progenitors (NPC) and Mesodermal progenitors (MSC).
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways.
No sample metadata fields
View SamplesThe traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers.
Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1.
Sex, Specimen part
View SamplesThese patients proved resistant to docetaxel treatment, exhibiting residual tumor of 25% or greater remaining volume.
Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer.
No sample metadata fields
View SamplesThese patients were sensitive to docetaxel treatment, exhibiting less than 25% residual tumor.
Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in MSC-derived hES cells (VUB01 and SA01) as compared to VUB01 and SA01 undifferentiated hES cells
Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1.
No sample metadata fields
View SamplesAlternative splicing is a mechanism for increasing the protein variety of a limited number of genes. Studies have shown that aberrant regulations of the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4ß-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana, and analyzed its biological effects in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of apoptotic genes (e.g., HIPK3, SMAC/DIABLO, and SURVIVIN), changes the expression level of splicing factors (e.g., hnRNP C1/C2, ASF/SF2, SRp20, and SRp55), and induces histone tail posttranslational modifications (e.g., H3K27me1, H3K27me2, H3K36me3, and H3K79me1). Pretreatment with okadaic acid to inhibit protein phosphatase-1 could partly relieve the effects of 4bHWE on the alternative splicing of HIPK3 and SMAC/DIABLO transcripts, as well as on the dephosphorylation of ASF/SF2. Genome-wide detection of alternative splicing further indicated that several other apoptosis-related genes are also regulated by 4bHWE, including APAF1, CARP-1, and RIPK1. Moreover, we extended our study to apoptosis-associated molecules, detecting an increasing level of CASPASE-3 activity and cleavage of poly ADP-ribose polymerase in 4bHWE-induced apoptosis. Furthermore, in vivo experiments showed that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease of tumor size and weight. Taken together, this study is the first to show that 4bHWE affects alternative splicing through the modulations of splicing factors, providing a novel view of the antitumor mechanism of 4bHWE. Overall design: Examination of the global genes with altered alternative splicing in 4bHWE-treated Huh-7 cells.
4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients.
No sample metadata fields
View Samples