Screening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesAs LRIG1 known to be a negative regulator of EGFR, we postulate that restored LRIG1 expression will change the transcription profile through the regulation of EGFR as well as its downstream signal cascades. Thus, we conducted a time-course microarray study to examine the effect of restored LRIG1 expression in NPC line, TW01-LG1/a, which the LRIG1 expression is under the control of a promoter with Doxycycline response element.
LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.
Cell line, Treatment, Time
View SamplesAlternative splicing is a mechanism for increasing the protein variety of a limited number of genes. Studies have shown that aberrant regulations of the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4ß-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana, and analyzed its biological effects in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of apoptotic genes (e.g., HIPK3, SMAC/DIABLO, and SURVIVIN), changes the expression level of splicing factors (e.g., hnRNP C1/C2, ASF/SF2, SRp20, and SRp55), and induces histone tail posttranslational modifications (e.g., H3K27me1, H3K27me2, H3K36me3, and H3K79me1). Pretreatment with okadaic acid to inhibit protein phosphatase-1 could partly relieve the effects of 4bHWE on the alternative splicing of HIPK3 and SMAC/DIABLO transcripts, as well as on the dephosphorylation of ASF/SF2. Genome-wide detection of alternative splicing further indicated that several other apoptosis-related genes are also regulated by 4bHWE, including APAF1, CARP-1, and RIPK1. Moreover, we extended our study to apoptosis-associated molecules, detecting an increasing level of CASPASE-3 activity and cleavage of poly ADP-ribose polymerase in 4bHWE-induced apoptosis. Furthermore, in vivo experiments showed that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease of tumor size and weight. Taken together, this study is the first to show that 4bHWE affects alternative splicing through the modulations of splicing factors, providing a novel view of the antitumor mechanism of 4bHWE. Overall design: Examination of the global genes with altered alternative splicing in 4bHWE-treated Huh-7 cells.
4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.
Specimen part, Treatment, Subject
View SamplesThe study demontrates differences in the transcriptome ( both of protein coding transcripts and long non-coding RNAs) in the unilateral ureteric obstruction model of renal fibrosis. Overall design: Renal tissue was studied from animals undergoing sham operation (as controls) or right ureteric ligation. Animals were sacrificed 2 and 8 days following ligation and the right kidney tissue was examined.
Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
Sex, Age, Specimen part, Cell line, Subject
View SamplesWe demonstrate that GLUT4 up-regulation significantly increased cell migration and invasion in lower magligance head and neck cancer cell lines in vitro.
Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis.
Specimen part, Cell line
View SamplesUnderstanding the contribution of abnormal genetic and epigenetic programs to acute myeloid leukemia (AML) is necessary for the integrated design of targeted therapies. To investigate this, we determined the effect of epigenetic reprogramming on leukemic behavior by generating induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements. AML-derived iPSCs (AML-iPSCs) retained leukemic mutations, but reset leukemic DNA methylation/gene expression patterns and lacked leukemic potential. However, when differentiated into hematopoietic cells, AML-iPSCs reacquired the ability to give rise to leukemia in vivo and reestablished leukemic methylation/gene expression patterns, including an aberrant MLL signature, indicating that epigenetic reprogramming was insufficient to eliminate leukemic behavior. In one case, we identified distinct AML-iPSC KRAS mutant and wildtype subclones that demonstrated differential growth properties and therapeutic susceptibilities, predicting KRAS wildtype clonal relapse due to increased cytarabine resistance. Increased cytarabine resistance was further observed in a cohort of KRAS wildtype MLL-rearranged AML samples, demonstrating the utility of AML-iPSCs in predicting subclonal relapse and facilitating clonal targeting in AML. Overall design: RNA seq profiling of normal and leukemic differentiated and iPSC populations
Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease.
Specimen part, Subject
View SamplesWe report the expression profiles of MCF10A cells encapsulated in hydrogels of varying stiffness and composition. Cells were encapsulated for 7 days in either 1.) soft alginate and reconstituted basement membrane (rBM), 2.) stiff alginate and rBM, 3,) soft col-1 and rBM, or 4.) stiff col-1. We find global gene expression changes in response to enhanced ECM stiffness, independent of expression changes in response to col-1 exposure. These results provide a comprehensive study of the gene expression changes associated with increased ECM stiffness in addition to the gene expression changes associated with increased col-1 concentration in combination with, and independent of, ECM stiffness. Overall design: Expression profiling of MCF10A cells in four hydrogel conditions were sequenced in duplicate via Illumina HiSeq.
YAP-independent mechanotransduction drives breast cancer progression.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated genomics has identified a new AT/RT-like yet INI1-positive brain tumor subtype among primary pediatric embryonal tumors.
Sex, Specimen part, Disease, Disease stage
View SamplesEmbryonal tumors of the central nervous system (CNS) represent a highly malignant tumor group of medulloblastoma (MB), atypical teratoid/rhabdoid tumor (AT/RT), and primitive neuroectodermal tumor (PNET) that frequently afflict children. In this study, we report transcriptome traits in MB by using gene expression microarray analyses. We also compare MB dataset with AT/RT cases and AT/RT-like cases.
Integrated genomics has identified a new AT/RT-like yet INI1-positive brain tumor subtype among primary pediatric embryonal tumors.
Sex, Specimen part, Disease stage
View SamplesPediatric embryonal brain tumor (PEBT), which includes medulloblastoma (MB), primitive neuroectodermal tumor (PNET) and atypical teratoid/rhabdoid tumor (AT/RT), is the second most prevalent pediatric tumor type among brain tumors of childhood. AT/RT is highly malignant and is often misdiagnosed as MB and PNET. Distinguishing AT/RT from PNET/MB is of clinical significance since the survival rate of AT/RT patients is much lower. The diagnosis of AT/RT relies primarily on the morphologic assessment and immunohistochemistry (IHC) staining on a few known markers such as the lack of INI1 protein expression. However, in our clinical practice we observed several AT/RT-like tumors, which fulfilled histopathologic and all other biomarker criteria for AT/RT diagnosis, still showed retained INI1 immunoreactivity. Recent studies also reported retained INI1 immunoreactivity among certain diagnosed AT/RTs. It is therefore necessary to re-evaluate INI1(+), AT/RT-like cases. Sanger sequencing, array CGH and mRNA microarray analyses were performed on PEBT samples for studying their genomics landscapes. AT/RT and INI(+) AT/RT-like patients had similar survival rate, and global array CGH analysis and INI1 gene sequencing showed there is no differential chromosomal aberration marker between INI1(-) AT/RT and INI(+) AT/RT-like cases. We did not misdiagnose MB or PNET as AT/RT-like cases since transcriptome profiling revealed that not only AT/RT and INI(+) AT/RT-like cases expressed distinct mRNA and microRNA profiles, and their gene expression patterns were different from those of MBs and PNETs. AT/RTs shared the closest transcriptome profile to embryonic stem cells, INI1(+) AT/RT-like tumors were more similar to somatic neural stem cell, while MBs were closer to fetal brain. Novel biomarkers were identified to distinguish INI1(-) AT/RTs, INI1(+) AT/RT-like cases and MBs. Our studies disclosed a novel INI1(+) ATRT-like subtype among Taiwanese pediatric cases. New diagnostic biomarkers, as well as new therapeutic tactics, can be developed according to the transcriptome information unveiled in this work.
Integrated genomics has identified a new AT/RT-like yet INI1-positive brain tumor subtype among primary pediatric embryonal tumors.
Sex, Disease
View Samples