Plasmacytoid dendritic cells wre isolated from cutaneous lymph nodes of control C57BL/6 mice and used for microarray analysis.
Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells.
Specimen part
View SamplesMacrophages in tumor microenvironment have been characterized as M1- and M2-polarized subtypes. This study sought to investigate the effects of different macrophage subtypes on the biological behavior and global gene expression profiles of lung cancer cells. Expression microarray and bioinformatics analyses indicated that the different macrophage subtypes mainly regulated genes involved in cell cycle, cytoskeletal remodeling, coagulation, cell adhesion and apoptosis pathways in A549 cells, a pattern that correlated with the altered behavior of A549 cells observed after coculture with macrophage subtypes.
Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression.
Specimen part, Cell line
View SamplesIn order to identify patterns of gene expression associated with biological effects in THP-1 cells induced by F3, we performed a transcriptomic analysis on the THP-1 control and F3-treated THP-1 cells by oligonucleotide microarray
Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction.
Cell line
View SamplesBackground
STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas.
No sample metadata fields
View SamplesPsoriasis is a chronic inflammatory skin disease of unknown etiology. Although macrophages and dendritic cells (DCs) have been proposed to drive the psoriatic cascade, their largely overlapping phenotype hampered studying their respective role. Topical application of Imiquimod, a Toll-like receptor 7 agonist, induces psoriasis in patients and psoriasiform inflammation in mice. We showed that daily application of Imiquimod for 14 days recapitulated both the initiation and the maintenance phase of psoriasis. Based on our ability to discriminate Langerhans cells (LCs), conventional DCs, monocytes, monocyte-derived DCs and macrophages in the skin, we characterized their dynamics during both phases of psoriasis. During the initiation phase, neutrophils infiltrated the epidermis whereas monocytes and monocyte-derived DCs were predominant in the dermis. During the maintenance phase, LCs and macrophage numbers increased in the epidermis and dermis, respectively. LC expansion resulted from local proliferation, a conclusion supported by transcriptional analysis. Continuous depletion of LCs during the course of Imiquimod treatment aggravated chronic psoriatic symptoms as documented by an increased influx of neutrophils and a stronger inflammation. Therefore, by developing a mouse model that mimics the human disease more accurately, we established that LCs play a negative regulatory role during the maintenance phase of psoriasis.
Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis.
Specimen part, Treatment
View SamplesThe CLS1/CAF co-culture maintained the cancer stemness. This cancer stemness was lost when the CAF feeder cells were removed during passaging.
Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling.
Cell line
View SamplesPlasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll Like Receptors (TLR) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. IFN-I production in pDC occurs in specialized endosomes encompassing preformed signaling complexes of TLR7 or 9 with their adaptor molecule MyD88 and the transcription factor interferon regulatory factor 7 (IRF7). The triggering of TLR leads to IRF7 phosphorylation, nuclear translocation and binding to the promoters of the genes encoding IFN-I to initiate their transcription. pDC express uniquely high levels of IRF7 at steady state and this expression is further enhanced by positive IFN-I feedback signaling during viral infections. However, the specific cell-intrinsic roles of MyD88 versus IFN-I signaling in pDC responses to a viral infection have not been rigorously dissected. To achieve this aim, we generated mixed bone marrow chimera mice (MBMC) allowing to rigorously compare the gene expression profiles of WT versus Ifnar1-KO or MyD88-KO pDC isolated from the same animals at steady state or after infection with the mouse cytomegalovirus (MCMV). Our results indicate that, in vivo during MCMV infection, pDC undergo a major transcriptional reprogramming, under combined instruction of IFN-I, IFN- and direct TLR triggering. However, these different stimuli drive specific, largely distinct, gene expression programs. We rigorously determined which gene modules require cell-intrinsic IFN-I signaling for their induction in pDC during a physiological viral infection in vivo. We delineated non-redundant versus shared versus antagonistic responses with IFN-. We demonstrated that cell-intrinsic IFN-I responsiveness is dispensable for induction of the expression of all IFN-I/III genes and many cytokines or chemokines in pDC during MCMV infection, contrary to MyD88 signaling.
Molecular dissection of plasmacytoid dendritic cell activation <i>in vivo</i> during a viral infection.
Specimen part, Treatment
View SamplesThe goal of this experiment was to use global gene expression profiling to assess the global genetic reprogramming of different types of splenic mononuclear phagocytes early after MCMV infection in vivo. This study includes new samples (GSM3178486-GSM3178497; available below) profiling splenic CD11b+ conventional dendritic cells (cDC2), classical monocytes (cMo) and red pulp macrophages (RPM) from untreated or day 1.5 MCMV-infected mice together with re-analysis of previously published data in order to examine the similarities in the pDC gene expression profiles across datasets.
Molecular dissection of plasmacytoid dendritic cell activation <i>in vivo</i> during a viral infection.
Specimen part, Treatment
View SamplesThe mammary gland at early stages of pregnancy undergoes fast cell proliferation, yet the mechanism to ensure its genome integrity is largely unknown. Here we show that pregnancy enhances expression of genes involved in numerous pathways, including most genes encoding replisomes. In mouse mammary glands, replisome genes are positively regulated by estrogen/ERa signaling but negatively regulated by BRCA1. Upon DNA damage, BRCA1 deficiency markedly enhances DNA replication initiation. BRCA1 deficiency also preferably impairs DNA replication checkpoints mediated by ATR and CHK1 but not by WEE1, which inhibits DNA replication initiation through CDC7-MCM2 pathway and enables BRCA1-deficient cells to avoid further genomic instability. Thus, BRCA1 and WEE1 inhibit DNA replication initiation in a parallel manner to ensure genome stability for mammary gland development during pregnancy.
BRCA1 represses DNA replication initiation through antagonizing estrogen signaling and maintains genome stability in parallel with WEE1-MCM2 signaling during pregnancy.
No sample metadata fields
View SamplesWe report the high-throughput profiling of brain RNA from three Drosophila stains: dBRWD3PX2/+, dBRWD3PX2/PX2 and dBRWD3PX2/PX2, yemGS21861/GS21861. By obtaining over 50 million reads of sequence, WE compared the transcriptomic differences among the brains from these three stains. We found that the expression of 871 genes was significantly different between heterozygous control and homozygous dBRWD3 mutant brains (484 upregulated genes, 387 downregulated genes, p<0.05). Gene ontology (GO) analysis of the 871 genes revealed a broad spectrum of biological processes, ranging from synaptic activity to housekeeping metabolism subjective to dBRWD3 regulation. Among the 387 downregulated genes, the expression of 360 genes (92.8%) was increased in the dBRWD3, yem double mutant brains compared with dBRWD3 mutant. Among the 484 upregulated genes, the expression of 412 genes (85.1%) was decreased in the double mutant brains. These differential genes were evenly distributed on X chromosome and autosomes (149 on X, 178 on 2L, 154 on 2R, 166 on 3L, and 207 on 3R). These analyses indicate that dBRWD3 regulates gene expression in the brain mainly through the HIRA/YEM complex. Overall design: Examination of brain transcriptome in 3 Drosophila strains.
Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3.
Specimen part, Cell line, Subject
View Samples